
1

The Inside Track
�COM See, COM Saw�

January 2001

If my titles get to be too cute, blast me some e-mail. That said I really like the title this month. You
see, I remember only about a half dozen phrases from the French I learned 30 years ago and this
phrase has stuck in my head. �Comme ci, comme ça� which is a response to the question �How
are you?� The answer means �so, so�. I�ve mangled the spelling for this month�s title to reflect the
topic COM (Component Object Model).

Inside Great PlainsMicrosoft?

I�m betting that you�ve noticed that while my column is called �The Inside Track,� almost all of the
technologies I�ve been talking about are straight out of the Microsoft playbook. So, you say, why
didn�t I just call this column �The Outside Track�? By now you�ve heard that Microsoft has signed
an intent to acquire Great Plains so I could just argue that the outside is becoming the inside.
Wouldn�t that be a copout? And the truth is that I heard about the acquisition on December 21st
just like everyone else. Oh, I heard one person with a rumor a week or two before, but I
dismissed it. I�d heard that one before!

No the real reason that I�ve been focusing on Microsoft technologies in this column is just what I
said in my first column. At Great Plains, we are building our next generation products on
Microsoft�s family of technologies called .NET. Nonetheless, I�ve started to feel that I need to
bring some of what I�ve been writing about together with what we are doing in development at
Great Plains.

COM in Common

When two programs talk to each other its called Inter-application Communication (IAC). All of the
.NET languages run in the Common Language Runtime and use the .NET Framework class
library. I haven�t delved into the IAC part of .NET myself, so I don�t know much about the specifics
except one. When the two programs are on different machines, the preferred IAC mechanism is
XML over HTTP using a defined format called SOAP (Simple Object Access Protocol).

Today, we can use COM for the same task. COM defines how two chunks of code communicate.
If one chunk is in an .EXE and the other in a .DLL, this is call in-process COM. If both chunks are
in .EXE�s then this is called out-of-process COM. If both chunks are in .EXE�s but on different
machines, its called Distributed COM or DCOM. You probably knew all that.

So DCOM and SOAP are intended to accomplish pretty much the same thing. While I think we
can assume that Microsoft would have liked COM to be ubiquitous, the Internet has dictated that
HTTP and XML will be the IAC mechanism of choice.

Just like any technology, there will be a time while COM continues to be the dominant IAC
mechanism. So we�ll need a transitional technology. What is it? It�s a part of .NET that Microsoft
calls COM Interoperability or COM Interop for short. So thinking about COM still makes sense
today.

COM has existed in Dexterity for sometime now. Continuum is based on COM. Of course
Continuum is about an external application reaching into Dexterity using COM. Dexterity has
been able to use outgoing COM via VBA (Visual Basic for Applications). And we know how useful
that is!

But SanScript programmers have been left out of the picture. You could always figure out a way
to pump data from Dynamics or eEnterprise into a mail merge in Word or an Excel spreadsheet,

2

but it hasn�t been as clean as you (or we) might like. Well take heart because here comes
SanScript based COM. That�s right boys and girls, COM right from within native Dexterity
scripting.

Now you may see why I had a lot of fun with this month�s title! COM is the tool we see today, but
it�s not the tool of choice in a .NET/Internet world of tomorrow. While COM will be with us for a
while, in the future COM will be the technology we saw in the past. In other words a �so, so�
technology. I know, way too cute.

Now that you�ve heard the good news about COM in Dexterity, let�s look at how it�s done.

Binding and Type Libraries

There are two basic ways of talking to a COM component (or ActiveX if you prefer): early bound
and late bound. In Visual Basic you use early (compile time) binding by adding a reference (menu
Project->References�) to your project and then using the name of the component to declare a
variable:

Dim rs As ADODB.Recordset

In this example, ADODB refers to a type library that contains a description of the RecordSet
component. A type library tells your development environment which components are available
and the components properties, methods and events. You may remember last month when we
talked about how the new .NET language C# handles these issues. A Visual C++ programmer
creates a type library by compiling a .MDL (short for MIDL the Microsoft Interface Definition
Language) file into a .TLB (type library) file. If you write a component in VB (ActiveX .EXE or
ActiveX .DLL project type), VB builds the type library for you. Sometimes the type library is a
separate file and sometimes its included right in the .EXE or .DLL (or .OCX). Wherever it comes
from, if you�re using early binding, the type library is used by the VB compiler to construct the
correct call to the COM component. Because this work is carried out at compile time, its fast at
runtime.

On the other hand, if you declare a variable as:

Dim rs As Object

Then the type of the component won�t be known at compile time, this is known as late (at runtime)
binding. Because constructing the call to the COM component must now take place at runtime it�s
slower. If you�ve used a scripting language (VBScript or JavaScript), you�ve used late binding, it�s
the only choice.

COM in Dexterity

Dexterity handles referencing a type library with the new �import� statement on the first line of a
script.

import “<filename>”;

or:
import “<GUID>[,version]”;

For example:

import “shell32.dll”;
or:

import “{00000205-0000-0010-8000-00AA006D2EA4}”;

3

In Dexterity you can also use either early or late binding. If you use the import statement, you can
declare a variable of a specific type and create an object of that type for early binding:

local GPData.Customer Cust;
Cust = new GPData.Customer();

Similarly in VB, you would write:

Dim Cust as GPData.Customer
Set Cust = New GPData.Customer

To use late binding in Dexterity no import statement is needed and you declare the variable to be
of type �reference�:

local reference Cust;
Cust = COM_CreateObject("GPData.Customer");

In VB no reference is needed and the variable type is �Object�:

Dim Cust as Object
Set Cust = CreateObject(“GPData.Customer”)

Calling a method in Dexterity is easy:

b = Cust.Load('(L) ID');

In VB:

b = Cust.Load(txtID.Text)

Last is reading from and writing to a property. In Dexterity:

'(L) Name' = Cust.Name;
Cust.Name = '(L) Name';

In VB the terms are �get� and �let�, but the syntax is very similar:

txtName.Text = Cust.Name
Cust.Name = txtName.Text

For the advanced student, there is a COM_GetObject() function in Dexterity that is similar to VB�s
GetObject() and you can specify the server in an optional second argument to
COM_CreateObject() for DCOM.

Unfortunately, COM in Dexterity is not in the current product so you can�t try my examples. And
my example is purposely simple to avoid some of the holes in the current partial implementation.
To give you a little more context for the examples, I�m going to include the code for the VB COM
component I used with Dexterity, the VB test program I used to test the COM component and
then the SanScript for exactly the same program in Dexterity.

The VB COM Component

In VB, create a new ActiveX DLL project, name it GPData, paste the following code into the class
module and name the class module Customer. NOTE: you will need to modify the ConnStr to
refer to an appropriate ODBC data source name and you will need to add a reference to ADODB.

4

ADODB is named something like �Microsoft ActiveX Data Objects 2.5 Library� when you are in
the References window in VB.

Option Explicit

Private Const ConnStr = "DSN=TWO;UID=sa;"

Private m_ID As String
Private m_Name As String

Public Property Get ID() As String
ID = m_ID

End Property

Public Property Let ID(ByVal NewID As String)
m_ID = NewID

End Property

Public Property Get Name() As String
Name = m_Name

End Property

Public Property Let Name(ByVal NewName As String)
m_Name = NewName

End Property

Public Function Load(ByVal LoadID As String) As Boolean
Dim rs As ADODB.Recordset

ID = LoadID
Set rs = New ADODB.Recordset
Call rs.Open("select CUSTNAME from RM00101 where CUSTNMBR = '" + ID +

"'", ConnStr, adOpenStatic, adLockReadOnly, -1)
If rs.BOF Or rs.EOF Then

Load = False
Else

m_Name = rs.Fields("CUSTNAME")
Load = True

End If
rs.Close
Set rs = Nothing

End Function

Public Function Save() As Boolean
Dim cmd As ADODB.Command
Dim recs As Integer

Set cmd = New ADODB.Command
cmd.CommandText = "update RM00101 set CUSTNAME = '" + Name + "' where

CUSTNMBR = '" + ID + "'"
cmd.CommandType = adCmdText
cmd.ActiveConnection = ConnStr
cmd.Execute recs
Save = recs = 1

End Function

The VB Test Program

Create a Standard EXE project, add the controls and set their names as given below. If you add
the COM component and the test program to the same Project Group in VB, it�s a lot easier to

5

debug and you don�t need to �make� either program to run it. You will also need to add a
reference in the test program to the COM component as �GPData� in the References window.

My version of the VB test program has 6 controls and 4 labels. The 6 controls are named: txtID,
txtName, cmdLoad, cmdSave, cmdLoadUntyped and cmdSaveUntyped. Here is what my form
looks like at run time:

If you have used exactly the same names for the controls, you can open a code window for the
project and paste the following code in directly.

Option Explicit

Private Sub cmdLoad_Click()
Dim Cust As GPData.Customer

Set Cust = New GPData.Customer
If Cust.Load(txtID.Text) Then

txtName.Text = Cust.Name
Else

txtName.Text = ""
MsgBox "Customer ID not found"

End If
Set Cust = Nothing

End Sub

Private Sub cmdLoadUntyped_Click()
Dim Cust As Object

Set Cust = CreateObject("GPData.Customer")
If Cust.Load(txtID.Text) Then

txtName.Text = Cust.Name
Else

txtName.Text = ""
MsgBox "Customer ID not found"

End If
Set Cust = Nothing

End Sub

Private Sub cmdSave_Click()
Dim Cust As GPData.Customer

Set Cust = New GPData.Customer
Cust.ID = txtID.Text
Cust.Name = txtName.Text
If Cust.Save Then

txtID.Text = ""
txtName.Text = ""
MsgBox "Customer Saved"

6

Else
MsgBox "Customer ID not found"

End If
Set Cust = Nothing

End Sub

Private Sub cmdSaveUntyped_Click()
Dim Cust As Object

Set Cust = CreateObject("GPData.Customer")
Cust.ID = txtID.Text
Cust.Name = txtName.Text
If Cust.Save Then

txtID.Text = ""
txtName.Text = ""
MsgBox "Customer Saved"

Else
MsgBox "Customer ID not found"

End If
Set Cust = Nothing

End Sub

The Dexterity Test Program

The Dexterity version looks almost the same as the VB version.

There are 4 scripts on the form, one for each button. If you were actually going to run this
program, you would need to know the GUID created by GPData.dll replacing mine (hint: use OLE
View in Visual Studio Tools) or put the path (either relative or absolute) to GPData.dll in the
import statements.

First, the �Typed Load� button.

import "{0E0B0D9E-A85D-4248-85BD-ECC2B3C0A8F3}";

local GPData.Customer Cust;
local boolean b;

Cust = new GPData.Customer();
Cust.ID = '(L) ID';
b = Cust.Load('(L) ID');

7

if b then
'(L) Name' = Cust.Name;

else
'(L) Name' = "";
warning "Customer ID not found";

end if;
Cust = null;

The �Typed Save� button:

import "{0E0B0D9E-A85D-4248-85BD-ECC2B3C0A8F3}";

local GPData.Customer Cust;
local boolean b;

Cust = new GPData.Customer();
Cust.ID = '(L) ID';
Cust.Name = '(L) Name';
b = Cust.Save();
if b then

'(L) ID' = "";
'(L) Name' = "";
warning "Customer Saved";

else
warning "Customer ID not found";

end if;
Cust = null;

The �Untyped Load� button:

local reference Cust;
local boolean b;

Cust = COM_CreateObject("GPData.Customer");
Cust.ID = '(L) ID';
b = Cust.Load('(L) ID');
if b then

'(L) Name' = Cust.Name;
else

'(L) Name' = "";
warning "Customer ID not found";

end if;
Cust = null;

And last, the �Untyped Save� button:

local reference Cust;
local boolean b;

Cust = COM_CreateObject("GPData.Customer");
Cust.ID = '(L) ID';
Cust.Name = '(L) Name';
b = Cust.Save();
if b then

'(L) ID' = "";
'(L) Name' = "";
warning "Customer Saved";

else
warning "Customer ID not found";

end if;
Cust = null;

8

Talk Again Later

There you have it. While we build the new road with .NET, we are building bridges that will bring
us all forward into that wonderful new Internet based world. I hope you�re feeling better than just
�so, so� about .NET. It will be an exciting and challenging trip, but even in software development,
the fun is in the trip not the arrival.

Until next month, signing off,
Karl Gunderson
Technical Evangelist

