
 Excerpts from the book

Crystal Reports .NET Programming

By Brian Bischof
Copyright 2004

www.CrystalReportsBook.com 2

This free ebook gets you started in the right direction for learning how to program with Crystal Reports for
.NET. The chapters in this book are direct excerpts from the book Crystal Reports .NET Programming
(ISBN 0-9749536-5-2) available April 1st, 2004. This gives you a chance to not only learn a lot about Crystal
Reports .NET for free, but also determine if the hardcopy version of the book is something that would benefit
you. The complete table of contents of the hardcopy version is listed below. The remaining chapters of this
ebook are excerpts of selected chapters. For more information see www.CrystalReportsBook.com.

Crystal Reports .NET Programming
Table of Contents

 Acknowledgements vii
 About the Author ix
 Preface 1
 PART I – Designing Reports

Chapter 1 Introduction 7
Chapter 2 Creating Reports 19
Chapter 3 Integrating Reports 47
Chapter 4 Sorting and Grouping 69
Chapter 5 Using Parameters 87
Chapter 6 Customizing Reports 95
Chapter 7 Using the Formula Editor 119
Chapter 8 Programming with Basic Syntax 137
Chapter 9 Using Built-In Functions 155
Chapter 10 Charting Data 177
Chapter 11 Creating Cross-Tab Reports 193
Chapter 12 Integrating Sub-Reports 213
Chapter 13 Connecting to Databases 233
 PART II – Programming Reports

Chapter 14 Learning the Report Object Models 267
Chapter 15 Runtime Customization 283
Chapter 16 Modifying Parameters and Formulas 317
Chapter 17 Dynamic Data Sources 341
Chapter 18 Reporting Web Services 381
Chapter 19 Exporting and Deploying Reports 391
Chapter 20 Upgrading to the RDC and RAS 423
Chapter 21 Comprehensive Examples 467
Appendix A Crystal Syntax Reference 497
Appendix B Report Object Model Diagrams 505
Appendix C Crystal Reports Resources 517
 Index 518

www.CrystalReportsBook.com 3

Preface

With the release of Visual Studio .NET, Microsoft gave programmers the first powerful report writing tool
that is completely integrated into the development environment. Crystal Reports has been included with
previous versions of Visual Studio in the past, but never with this degree of integration. Programmers can
now build a powerful reporting solution using the standard Visual Studio installation.

The one piece of the puzzle that is still missing is a solid set of documentation on how to use Crystal Reports
.NET to create a sophisticated reporting solution. The help files are great, but they don’t hold your hand and
walk you through the various steps to be productive. Prior to this book being printed, all the Crystal Reports
books available have focused their attention on the end user and treated programmers as they were an after-
thought. Finding useful code is like looking for a needle in a haystack. This is the first and only book on the
market written by a professional software developer for other software developers. Within these pages you will
find countless code listings to make every code-junkie happy. Beginning programmers and advanced
programmers alike will find that this book meets their needs.

Who this Book Is For
This book is for programmers that are new to Crystal Reports as well as programmers that are experienced
with Crystal Reports. If you are new to Crystal Reports, you will be shown how easy it is to quickly create
your first report and add it to your project. As you want to learn more reporting features you can turn to the
appropriate chapter and see how easy it is to make your reports more professional. If you are experienced with
Crystal Reports, you will be interested in learning what the .NET version of Crystal Reports lets you do as
well as what its limitations are. Learning how to perform runtime report customization will let you take your
reporting solution to the next level.

How the Book is Organized
This book is divided into two parts: Part I - Designing Reports and Part II - Programming Reports. Each part
is designed for two different types of report development.

Part I - Designing Reports is for the user who has either never used Crystal Reports before or has used a
previous version and wants to get up to speed on the .NET version. It walks you through the steps of creating
reports using the report designer. You are also shown how to add sophistication to your reports by learning
how to program with Crystal Syntax and Basic Syntax.

Part II - Programming Reports is for the advanced programmer who has mastered the art of designing reports
and wants to take their reports to next level by customizing them during runtime. You will learn the
intricacies of how the Crystal Reports object model is designed. This lets you take control of the report during
runtime. Unlike Part I which is focused on using the Report Designer, Part II focuses on writing code with
either VB.NET or C#.

www.CrystalReportsBook.com 4

Installing Crystal Reports
Crystal Reports for .NET is included with Visual Studio .NET. When you install Visual Studio .NET it is
one of the tools installed by default. After installation, Crystal Reports is listed as one of the components that
can be added to a project.

Crystal Reports for .NET is not included in the VB.NET or C# Standard versions. You need to purchase one
of the Visual Studio .NET packages to get Crystal Reports.

Installing Service Packs
If you look at the Crystal Decisions support site for .NET, you’ll see that there are dozens of known bugs
with the product. As a result, Crystal Decisions is always making corrections and improvements to the
product. It is critical that you go to their website on a regular basis to check for new downloads. In fact, you
should put down the book right now and install the lastest service packs.

There are two types of downloads available: Service Packs and Hot Fixes. Service packs are released every six
months. They include comprehensive bug fixes and additional features. Service packs have also been
regression tested. Hot fixes are released at the beginning of each month. They include minor bug fixes and
have not been as thoroughly tested as service packs.

Make sure you download the proper service pack for your version of Visual Studio. Service packs with a prefix
of “CR10” are for Visual Studio 2002. Service packs with a prefix of “CR11” are for Visual Studio 2003.

Service Packs: http://support.CrystalDecisions.com/ServicePacks

Hot Fixes: http://support.CrystalDecisions.com/hot_fix_application_guide/

VB.NET and C# Code
The code examples in this ebook only show the VB.NET programming code. It is fairly easy to translate this
code into C#. The hardcopy edition of the book has the complete C# code listed. If you are looking for a
quick way to convert VB.NET to C# (or vice-versa), please see my book “The .NET Languages: A Quick
Translation Guide” (ISBN 1-893115-48-8). It makes converting code easy.

Questions and Comments
Please email me your questions and comments to Comments@CrystalReportsBook.com. I can’t respond to
every email individually, but I will post new information on the book’s website. Any comments about the
book will be used to improve the 2nd edition that will come out for the next version of .NET.

www.CrystalReportsBook.com 5

Part I
Designing Reports

Learn how easy it is to design your first report and integrate it into a .NET application. After designing a
couple sample reports for both Windows and ASP.NET, you begin to understand report layouts and adding
new report objects. You’ll quickly move beyond the report wizards and create reports using grouping and
sorting, running totals, and subreports. If you want to perform dynamic formatting of report objects, learn
how to program in Basic syntax or Crystal syntax. This chapter takes you from being a novice to intermediate
report designer.

The code samples in Part I are deliberately kept simple so you can focus on learning how to design
professional looking reports. When you’re ready to tackle .NET runtime customization in VB.NET or C#,
move to Part II of the book.

www.CrystalReportsBook.com 6

1

Introducing Crystal Reports

Visual Studio .NET is the first Windows development environment that gives developers a fully integrated
and robust reporting solution. Crystal Reports is now installed with Visual Studio so developers can write
applications that have reports seamlessly integrated into them. Starting with Visual Basic 3.0, Crystal Reports
was included with the language, but not part of the default installation. It was also a stand-alone product that
was independent of the programming language.

Over the years Microsoft has been including Crystal Reports with each version of Visual Basic. With version 6
they even wrote a Data Report component that was supposed to be a replacement for Crystal Reports. But it
failed miserably.

With the release of Visual Studio.NET, Microsoft finally woke up to the needs of developers. They licensed
Crystal Decisions to write a version of Crystal Reports to be the default reporting solution installed with
.NET.1 Built into the IDE, Windows developers now have the tools to write presentation-quality interactive
reports.

Creating Your First Report
Before you learn about all the features of Crystal Reports, it is best to start by creating a quick report. Open
Visual Studio and create a new project. This can be either VB.NET or C#, and it can be either a Windows
Application or ASP.NET. Designing reports with Crystal Reports is independent of the application type. The
following steps are the same for both types of applications.

Once the project is open, select Project | Add New Item. This displays the list of available templates. Scroll
down near the bottom and select the Crystal Report template. Enter the name "Employee List". Figure 1-1
shows this dialog box for a Windows Application. Click Open to create the report.

Figure 1-1. The Add New Item dialog box.

1 Crystal Reports for .NET is a set of Runtime Callable Wrappers (RCW) around modified Crystal Reports 8.5 DLLs.
They have been modified to support the Crystal Reports 9/10 file formats.

www.CrystalReportsBook.com 7

When the Crystal Report Gallery dialog box appears, accept the defaults of "Use Report Expert" and
"Standard Report". This opens the Standard Report Expert shown in Figure 1-2.

Figure 1-2. The Standard Report Expert dialog box.

The first tab shown is the Data tab. Select the Xtreme Sample Database (it comes with Crystal Reports) by
clicking on the OLE DB (ADO) option in the Available Data Sources list. This brings up a new dialog box.
Select Microsoft Jet 4.0 OLE DB Provider. On the next dialog box enter the database name (database name is
the fully qualified file path). By default it is located at C:\Program Files\Microsoft Visual Studio .NET\Crystal
Reports\Samples\Database. Select Finish.

You are back at the Data tab of the expert. Click on the Tables node to expand and double-click on the
Employee table name (or drag and drop it) to move it to the window titled Tables In Report. Click Next.

Figure 1-3. The Data tab of the report expert.

www.CrystalReportsBook.com 8

To display fields on the report, you have to select them at the Fields tab. Double click on the following fields
to add them to the right window: Employee Id, Last Name, and Hire Date. This is shown in Figure 1-4.

Figure 1-4. The Fields tab of the report expert.

At this point you could continue with the report expert to do things such as grouping and selecting which
records to print. But for this simple example, ignore those tabs and click on the Style tab. Enter the title
Employee List and keep the default style of Standard. Click Finish.

The report expert closes and builds a fully functioning report that is ready to run (Figure 1-5). If this report
were to be used in a real application, the next step would be to modify the form so that it can preview and
print the report.

Figure 1-5. Employee List report file.

Previewing with a Windows Form
After creating the Employee List report in the previous section, you can preview it using either a Windows
Form or and ASP.NET application. This section shows you how to preview it from a Windows Form.
ASP.NET is covered in the next section.

Previewing the report requires modifying the form. When you created the new project, Form1 should have
been automatically added to the project for you. Open Form1 in design mode and add a CrystalReportViewer

www.CrystalReportsBook.com 9

control to it. This is normally listed as the last component in the Windows Forms section of the Toolbox.
Resize the viewer so that it fills up the entire form. Do this by finding its Dock property and clicking on the
drop-down box. Click on the middle square so that the property is set to Fill.

The viewer control has many ways to preview reports.2 This example uses the ReportDocument component
because it is the easiest of the choices. Add the ReportDocument component to the form by double-clicking
on it from the Componets section of the Toolbox. A Choose a ReportDocument dialog box automatically
appears, allowing you to select which report to display. The dropdown control lists all the reports that are part
of your project. For this example, it only shows the Employee List report.

Figure 1-6. The ReportDocument dialog box.

Select the Employee List report and click the OK button. This adds the ReportDocument component to your
form.

You have to tell the viewer that the report it is going to preview is in the ReportDocument component. Look
at the Properties Window and find the ReportSource property. It has a dropdown control which lists the
ReportDocument components on the form. In this example, the Employee List will be the only one listed.
Click on the Employee_List component to select it.

Run the application. When the form loads it automatically instantiates the Employee List report object and
display it using the viewer. Print it by clicking on the printer button in the menu bar. The preview of the
Employee List report is shown in Figure 1-6.

2 Chapter 3 gives a complete explanation of using the viewer control.

www.CrystalReportsBook.com 10

Figure 1-6. Employee List report output in preview mode.

You can see that this quick report isn't perfect. The Hire Date column shows times as always being 12:00:00
AM and the Group Tree is visible even though there aren't any groups in the report. As is usually the case, the
report expert gives you a good basis for writing a report, but you still need to make some changes to clean it
up.

Previewing a report with ASP.NET requires adding a CrystalReportViewer control to the web page and
setting its data bindings. Open the default web page in design mode and add a viewer control to it. The
viewer is located near the end of the Toolbox under the Web Forms tab. Once you add it to the form you will
see a medium sized rectangle on the web page.

Figure 1-7. The ASP.NET report viewer control.

Notice that the web viewer control looks totally different than the Windows viewer control. The web viewer
is simply a placeholder for where the report will be displayed.

www.CrystalReportsBook.com 11

Add a ReportDocument component to the web page by double-clicking on the ReportDocument
component. The ReportDocument component is listed in the Components section of the Toolbox. As
mention in the previous section, when you add a ReportDocument component to your form, it automatically
displays the Choose a ReportDocument dialog box. This lets you select which report will be displayed. The
dropdown control lists all the reports that are part of your project. For this example, it will only show the
Employee List report.

Figure 1-8. The ReportDocument dialog box.

Select the Employee List report and click the OK button. This adds the ReportDocument component to your
form.

You have to associate the ReportDocument component with the viewer control so that the viewer knows
which report to display. Look at the viewer’s properties and at the very top is the DataBindings property. Click
on it and then click on the ellipses button to open the DataBindings dialog box.

www.CrystalReportsBook.com 12

Click on the ReportSource property listed on the left. Expand the Page item in the Simple Binding window. It
shows you the reports that were added to the page using the ReportDocument components. In this example,
only the Employee List report is shown.

Click on the Employee List report item and click the OK button. A preview of the report is immediately
displayed. Unlike Windows development, the viewer control shows you what the report looks like while you
are in design mode. This a great feature for web developers!

At this point, you’ve performed all the same steps that were shown during the previous example for
previewing with a Windows application. However, if you ran your ASP.NET application now, the report
wouldn’t be shown. To make the report display on the web page you have to call its DataBind() method. Do
this in the Page_Load() event.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 CrystalReportViewer1.DataBind()

End Sub

After typing in this code, run the web application and you’ll see the Employee List report automatically
previewed when the page opens.

Figure 1-9. The Employee List report shown in an ASP.NET application.

Examining the Report Designer
Each report within your application is just like any other component that your application uses. It is listed in
the Solution Explorer window as a class in your project. When you double-click it, it opens the report in
design mode and you can make changes to it.

Each report starts with five sections: Report Header, Page Header, Detail, Page Footer, and Report Footer.
These sections are described in Table 1-1.

www.CrystalReportsBook.com 13

Table 1-1. Report sections.

Section Description

Report Header Appears at the top of the first page of the report.

Page Header Appears after the Report Header on the first page. On all
the remaining pages it appears at the top of the page.

Group Header Appears at the beginning of each new group.

Details The row that displays the record information. There is
usually one detail row for every record in the table.

Group Footer Appears after all records of a group have been printed.

Page Footer Appears at the bottom of each page.

Report Footer Appears as the bottom of the page for the last page in the
report.

To the left of the report layout is the Toolbox as shown in Figure 1-10. When you have the report designer
open, there are only a few controls available in the Toolbox. They are the Text Object, Line Object, and Box
Object. These are the most basic of the controls available.

Figure 1-10. Crystal Report's toolbox.

Oddly enough, there are more controls that can be used on a report, but they aren't listed in the toolbox. You
have to right-click on the report and select the Insert menu option. This menu is shown in Figure 1-11. There
are ten controls on it that can be added to a report as well as a lot of special fields that display report specific
information (e.g. page number, print date, etc.). These controls are described in Chapter 2.

Figure 1-11. Crystal Report's Insert menu.

www.CrystalReportsBook.com 14

In the bottom right hand corner of the IDE is the Properties window. As expected, these properties are only
applicable for the control that has the focus.

The CrystalReportViewer Control
The CrystalReportViewer control is used on a form to display a report. You have to use this control when you
want to preview and print a report. It is found in the form's Toolbox as the last control listed. To access it,
you have to use the down arrow to scroll down to it.

The CrystalReportViewer control is fully customizable. Since it is the only way to display a report in your
application, you may need to customize it for some applications. You don't want a user to feel like they are
looking at a third-party control when using your application. Each of the buttons can turned on or off in
design mode or during runtime. You can also add your own buttons to a form and have them manipulate the
report layout and respond to user events.

Two-Pass Report Processing
Crystal Reports processes reports in three stages. This is called the Two-Pass Report Processing Model. The
first pass creates the primary data to be printed. During the second pass this data is further processed to
finalize it for printing.

The first pass reads individual records one at a time and calculates all formulas. This pass only calculates the
formulas that are based on raw data within a record or that perform simple calculations. As each record is read
and the formulas are calculated, the results are stored in a temporary file to be used during the second pass.

After the first pass is finished, Crystal Reports performs a second pass where it evaluates all summary
functions on the data. This wasn't possible during the first pass because all the data had not been read yet.
During the second pass all the raw data has already been read into the temporary file and it can be evaluated
and summarized as a whole.

After the second pass is finished, the report engine calculates the total number of pages if the report needs it
or if the special field Page N of M is used.

Understanding the type of data that is processed during the Two-Pass Processing Model is essential to being
able to write formulas and summarize data. Different chapters throughout this book reference this model for
explaining when you can and can’t use certain reporting functionality.

www.CrystalReportsBook.com 15

2

Creating Reports

Since Crystal Reports is fully integrated with Visual Studio .NET, you may be tempted to think that creating
a new report is a simple matter that only takes a minute or two. While this is true after you have a little
experience, creating a report the first time can be confusing if you don't follow the proper steps. This chapter
shows you what steps are required and how to do them, providing you with a foundation for all chapters to
follow. After writing a couple of reports, these steps become second nature. There are two parts to learn:
creating a report and printing a report.

Creating a Report
Reports are files that must be created with the Visual Studio IDE. This requires opening a project and
building the files within it. Adding a report to a project involves 5 steps. Each step has different options that
you need to consider before implementing it.

Table 2-1. Steps for writing a report.

Step Description

1. Creating a new report file From the menu, select Project/Add New Item. Follow the prompts to
select the report type.

2. Running the report experts Use the different report experts to identify the tables and fields to
print and get a good start in the right direction. This is optional.

3. Setting the designer's defaults Make sure your development environment is the way you want it
before working on your report.

4. Adding report objects to the
report

Add the different objects that your report needs. These objects consist
of textboxes, fields, etc.

5. Formatting the objects Set the properties of the objects so that they are formatted properly.
These properties consists of fonts, sizes, etc.

Before you add a report to your project, you need to know what your reporting goals are, and how the report
will help fulfill these goals for your application. None of the options presented here are complex, you just
need to be aware of what they are in advance. The following sections explain each step in detail and tell you
what you need to consider when doing each one. The last section of the chapter, Coding Samples, pulls
together everything you learned in this chapter and shows sample code of how to print and preview reports.

Creating a New Report Class
To create and print a report, you need to create a new report class for your project. Once the class is created,
you can modify it using the report designer and then call it from your application.

Creating a new report class is done two different ways. The first is to select the menu options Project | Add
New Component. The other way is to right-click on your project name in the Solutions Explorer window
and select Add | Add New Component. Both of these methods open the Add New Item dialog. Scroll down
near the bottom to select Crystal Report, type in a report name, and click Open.

www.CrystalReportsBook.com 16

The Crystal Report Gallery dialog box opens (see Figure 2-1). You are given the option of using the report
expert, creating a blank report, or creating a report using an existing report. If you choose the Report expert
option, you can tell it the type of report expert to use in the list box below the options. If you choose to start
with a blank report, the gallery goes away and a new report is created. This report gives you the five basic
report sections and each is empty. Add report objects to the proper sections and format them to build your
report.

You can also create a new report based off an existing report by selecting Project | Add Existing Item. This
skips the Gallery dialog box and immediately shows you the Open File dialog box. A copy of the report is
saved in the same folder as your application. All changes are made to the local copy and do not effect the
original report.

Figure 2-1. The Report Gallery dialog box.

Using the Report Experts
Depending upon your needs, creating reports can be a simple or complicated process. For example, it is very
easy to print mailing labels from an address database or a form letter to a list of subscribers. On the other
hand, it can be very complicated to write a report that uses multiple sub-reports which are based off of user
entered parameters. Fortunately, the report experts that come with Crystal Reports, often referred to as
"Wizards" in other applications, make it easy to quickly produce a variety of reports. The experts are useful
for writing complex reports because they give you a way to quickly make a professional looking report
template that you can customize for your specific needs.

Crystal Reports uses different experts to create seven types of reports: Standard, Form Letter, Form, Cross-
tab, Sub-report, Mailing Label, and Drill-Down.

Since experts are designed to be easy to use, you might be wondering why this chapter needs to explain them.
The problem with experts is that they are supposed to be simple to use, but often a tool that is simple is
generally not very useful. As a result, today's applications are designed so that not only can you quickly answer
the questions presented and create the final product, but you can also click on various buttons and checkboxes
to add advanced functionality. This gives you the best of both worlds: a simple to use interface with extra
features for advanced users.

www.CrystalReportsBook.com 17

Each expert consists of a multi-tabbed dialog box. Many of the tabs on each expert are used elsewhere within
the main functionality of Crystal Reports. This chapter summarizes each tab and the details are covered in
later chapters.

Using the Tabbed Dialog Boxes
Each report expert uses a combination of different tabbed dialog boxes to question you about how to build
your report. Each expert presents a slightly different combination of these tabs. This section describes how to
use each tab and explains any aspects of it that may not be obvious. The report expert tabs are called Data,
Links, Fields, Group, Total, TopN, Chart, and Select.

The Data Tab
The Data tab is the first dialog box presented after you select which type of report you want. It lets you select
the database and tables that store your data. The database can be a standard data source such as SQL Server or
a non-standard data source such as an Excel spreadsheet.

Figure 2-2. The Data tab of the report experts.

www.CrystalReportsBook.com 18

The Links Tab
Reports that use two or more tables need to have the tables linked so that data can be pulled from both of
them. The Links tab lets you set the fields for creating relationships between the tables. Crystal Reports
automatically attempts to link the tables together by using common field names. If two tables have a field
with the same name and the data types are compatible, then Crystal will link them using this field.

Figure 2-3. The Links tab of the report experts.

www.CrystalReportsBook.com 19

The Fields Tab
After selecting which tables you want to use for your report, the Fields tab allows you to select which fields
will be shown. . Adding and deleting fields is done in the standard manner of dragging and dropping them
between windows or selecting a field and clicking on the appropriate arrow button.

Figure 2-4. The Fields tab of the report experts.

After you add all the necessary fields to your report, you are free to reorder them by using the arrow buttons
above the window. Select the field to move and click the up or down arrow to reposition it.

www.CrystalReportsBook.com 20

The Group Tab
Some reports have so much data on them that they can be a little hard to understand. When reports are
dozens or even hundreds of pages long, you need to organize the information in a way that makes it easier to
absorb the data in smaller pieces. You do this by creating groups within the report. Groups can be based on
many things. Some examples are grouping on months of the year or the names of the different branch offices
for a company.

Figure 2-5. The Groups tab of the Report Expert.

www.CrystalReportsBook.com 21

The Total Tab
It is very common for reports to calculate sub-totals and other summary calculations on the numeric fields.
The Total tab, shown in Figure 2-6, is where you define the summary calculations for the different fields. The
left listbox shows all the available fields. The right listbox shows the fields that will have summary functions
calculated for them.

Figure 2-6. The Total tab of the Report Expert.

www.CrystalReportsBook.com 22

The Top N Tab
When adding a group to a report, you probably assume that every record within the group will be displayed.
In most circumstances this is the case. However, you can tell Crystal Reports to only display a certain number
of records based upon their rank. For example, you could have a top salesperson report where you show the
top 10 salespeople in your office. You could also have another report that shows the worst 10 salespeople. The
Top N tab lets you do this by sorting the groups based on a summary field

Figure 2-7. The Top N tab from the Report Expert.

www.CrystalReportsBook.com 23

The Chart Tab
This tab lets you add a chart to your report. You can also set a variety of options for what type of chart to
display and how to display it.

Figure 2-8. The Chart tab from the Report Expert.

www.CrystalReportsBook.com 24

The Select Tab
Some reports need to only show a sub-set of all the data that is in a recordset. For example, a financial report
may only show the corporate data for a single quarter or a range of quarters. To filter out certain data so that
you limit how much information is shown on a report, use the Select tab shown in Figure 2-9.

Figure 2-9. The Select tab from the Report Expert.

www.CrystalReportsBook.com 25

The Style Tab
After specifying the report details, use the Style tab to format everything so that the report has a professional
look to it. This tab, shown in Figure 2-10, lists 10 different pre-determined formats that can be applied to
your report. These styles make it easy for you to take some raw data and spice it up enough to make everyone
think you worked really hard on this report!

Figure 2-10. The Style tab from the Report Expert..

www.CrystalReportsBook.com 26

The Form Letter Tab
This tab is only available when using the Form Letter Expert. It lets you write the entire form letter within
this tab. See Figure 2-11. At the top is a drop-down box that lists the different sections of the report. For
example, it lists the Report Header, Page Header, any group header sections and the Detail section. Select the
section you want to write and type the text in the scrollable textbox below it. You can also insert formulas or
fields from the data sources in this textbox and the expert keeps track of it all. When you are finished and you
close the expert, it adds a large text box to your report for each section and fills in the information you
entered.

Figure 2-11. The Form Letter tab from the Report Expert.

www.CrystalReportsBook.com 27

The Form Tab
The Form tab, shown in Figure 2-12, is only available when using the Form Expert. It gives you a way to
easily add a picture or logo to the sections of a report. Often when you add a picture using the expert, it
might not be sized properly and could look distorted. Don't worry about that because it will look fine on the
report and if you need to, you can always change its properties in design mode.

The Form tab also makes it easy to write reports that print onto standardized forms. Scan in the form that
you want to print onto. Then use an image editor to crop it into the appropriate sections: Header, Detail,
Footer, etc. Insert each section into the proper section of your report. Add the fields so that they line up
exactly with the scanned image. When you are finished adding all the fields, delete the images. This leaves you
with only the fields to print and they are lined up perfectly.

Figure 2-12. The Form tab from the Report Expert..

The Cross-Tab and Customize Style Tabs
These tabs are only available when using the Cross-Tab Expert. They let you modify the cross-tab data for
what appears in the rows and columns. Modifying these tabs is very involved and is explained in detail in
Chapter 11.

The Drill Tab
The Drill tab is only available when using the Drill-Down Expert. When creating drill-down reports, you
allow the user to see a summarized view of their data. If they want to examine the data in more detail, they
can expand a record to see more detail relating to the summarized information. The summarized fields are
listed on this tab. When you click on the field's name, it will toggle it back and forth between "Show" and
"Hide". This will alternate the default of whether it gets displayed or not.

www.CrystalReportsBook.com 28

Setting the Designer's Defaults
The report designer is where you will spend all your time creating reports and modifying them. There are
many different default settings that you can set that control how you interact with the report designer as well
as controlling how you access and display data on a report. Knowing what the different options are will not
only make you more efficient, but it can also save you a lot of headaches. It is very likely that once you set
these default values you will not come back to this step. However, when starting a new application, it would
be beneficial to set the default values for how different report objects are displayed. For example, if you decide
to always make group headers a certain font, then you can set that to be the default and you won't have to
modify it every time.

To modify the default settings, right-click anywhere on the report and select Designer/Default Settings. The
Default Settings dialog box appears. There are seven different tabs that control the default settings. Each tab
affects different parts of the designer and report output.

Figure 2-13. The Default Settings dialog box.

The Layout Tab
The Layout tab effects your interaction with the report designer. The Field Options frame sets how fields are
shown on the designer. You have the option of showing the names of the fields that are being displayed, the
names that were assigned to each object, or format symbols. Showing the format symbols is useful for seeing
how the different numbers will be formatted and seeing the maximum width that a string can use.

The Grid Options frame will be discussed in the Adding, Resizing and Moving Controls section. It lets you
turn the grid markers on and off and set whether objects must align with them. The View Options frame sets
what is shown in design mode.

The Database Tab
The Database tab effects how items are displayed in the Field Explorer and it has settings for tweaking
performance. See Figure 2-14. The settings for changing the Field Explorer are many. They consist of
deciding what types of objects are to be displayed and how the items will be sorted.

www.CrystalReportsBook.com 29

Figure 2-14. The Database tab.

Performance related settings are listed in the Advanced Options frame. The setting to use indexes on the
server is set by default. Using indexes on the server gives you better performance because the server is
optimized for doing this. The other performance related setting is to perform grouping on the server. Just like
performing indexes on the server is faster, so is having the server do the grouping. Unfortunately, you can
only use this option for accessing SQL tables directly. It isn't available when reporting off queries.

The Editors Tab
The Editors tab modifies those fonts that the Formula Editor and SQL Expression Editor use to display the
programming code. You are free to customize the different programming elements to your heart's content.

The Data Source Defaults Tab
The Data Source tab lets you specify a default folder for where the database files are located. This is used with
the Data tab of the Report Expert. When selecting Database Files it will display the Open dialog box and
default to the folder you specified.

The Reporting Tab
The Reporting tab affects the output of your reports. See Figure 2-15. The top frame lets you set how data is
read from the data source. You can automatically convert DateTime data to a String, a Date, or keep it as a
DateTime data type. See Chapter 8 for a discussion of the date data types. Within this frame you can also
convert NULL fields to their default value. This is very useful for ensuring that numeric fields are printed as a
zero and not an empty field.

www.CrystalReportsBook.com 30

Figure 2-15. The Reporting tab.

The bottom frame contains miscellaneous options. Reports can save their data so that they don't have to
reload and process the records every time (this really improves printing speed). If you want your reports to
discard the old data and always re-query the data source for the latest data, then turn the option on. You can
also tell it to re-import subreports so that they are always refreshed when printing a report.

You can set whether drill-down reports will show the column names for the drill-down data. A preview
picture (thumbnail) can be saved every time you run a report. The last option lets you set the default formula
language as discussed in Chapter 8.

The Fields Tab
Every data type that can be displayed on a report has a default display format. For example, the default for
displaying a number is to use two decimal places. The Fields tab lets you set the default formats for all the
available data types (see Chapter 8 for a list of data types). By changing the default here, every new object that
is added to your report after changing the default will use this setting. Any objects that were added before you
made the change will not reflect the new format.

The Font Tab
Just as the Fields tab sets the default format for the different data types, the Font tab sets the default font for
the different fields on a report. For example, you can make field titles appear in italics while group names
appear in bold. Once again, these changes will only affect objects that are added after you make your changes.

Using the Report Objects
A report is very similar to a Windows form. Just like a form, the report is listed as a separate object under your
project in the Solution Explorer window, there are various controls that can be added, and it is a class that has
to be instantiated before using it. The objects that are added to a report are also similar to the ones you use
when building forms. This section describes the different objects and how they are used. It also gives you a

www.CrystalReportsBook.com 31

reference for the properties of each object. Every property isn't listed because that would require reprinting
the MSDN documentation.3 But the properties you'll need to use on a regular basis are highlighted here.

There are three controls in the report toolbox (see Figure 2-16). You can access these and many others by
right-clicking on the report and selecting the Insert menu option (see Figure 2-17).

Figure 2-16. The control Toolbox.

Figure 2-17. The Insert menu option.

Adding, Resizing and Moving Report Objects
The objects on a report work the same as the controls on a form. The objects that are listed in the toolbox can
be added to the report by dragging and dropping them onto the proper section of the report. You can also
double-click on them and they will be automatically added to the section that has the focus (its header bar
will be blue while the other header bars will be gray). If you have an existing control that you want to reuse
and it has already been formatted, then you can highlight it and copy and paste it. This creates a copy that is
attached to your pointer and will move around as you move your mouse. When you have it positioned
properly, click the mouse button to drop it there. You can also select multiple objects for copy and paste.

Selecting multiple objects is done by holding down the control or shift key and clicking on the individual
controls. You can also draw a temporary window on the report and any controls that are included in the
window get selected. Do this by holding down the mouse button and moving the mouse to enlarge the box.
Let go of the mouse when the box is complete and the objects will be selected.

There is a strange behavior to be aware of when selecting multiple objects using the window technique. You
can't draw a window if another object is already selected. You have to first click anywhere on the report to
unselect the current object and then you can draw the box. For example, assume that you selected a textbox

3 There are already too many .NET books that consider printing out the MSDN tables to be quality writing. I don’t
want this book to put in that group of trash.

www.CrystalReportsBook.com 32

object. You then decide that you really wanted to select multiple textboxes so you click elsewhere on the
report and attempt to draw a window. Unfortunately, nothing will happen. It only results in the textbox
getting unselected. You need to click the mouse again to start drawing the window.

You can only select multiple objects when they are compatible. For example, the box and line objects can be
selected together, but the box object can't be selected with the text object.

Resizing a control is done by selecting it to give it the focus. Position the mouse over the sizing handles on
any side and drag them. When resizing multiple objects, the sizing handle will only appear on the last control
selected. As you resize the last control, its new size changes as you move your mouse. The other controls will
not change until you release the mouse button. An option for resizing objects is to let Crystal adjust their size
to be the same for each one. After selecting all the objects, right-click on one and select the Size menu option.
From there you can choose Same Width, Same Height, or Same Size.

When moving objects on the report, it can be helpful to display the grid lines. This makes it easier to line up
objects with each other. You have the option of making the objects snap to the grid lines. This means that
when you move a control, its edge must be placed on a grid line. It can't be placed between grid lines. When
you release the mouse, the object will automatically snap to the nearest grid line. Turning grid lines feature
and the snap-to feature on and off is controlled by changing the designer properties. Right click on the report
and select Designer/Default Settings.

Turning on the snap-to grid lines option can be a blessing or a curse. There are two problems that can occur
when this option is turned on, and they both seem to occur most frequently with reports that have been
created with the report experts. The first problem is that when the report expert creates a report, it doesn't
always place the controls on the grid lines. When you later want to rearrange the controls on the report, or
add more controls, you can't get the new objects to line up because they are snapping to the grid lines. Since
the wizard placed the objects between grid lines, they won’t line up properly when they are on the grid lines.
The second problem with using the snap-to grid lines option is that it can be impossible to move multiple
objects and keep their spacing consistent. I call this the "rubber band effect". As you drag the objects across
the report, some will move and others won't. But as you move your mouse further, the ones that haven't
moved will now seem to snap into place and catch up with the other objects. If you move your mouse fairly
quickly across the page they will appear to bounce around like they are being pulled by rubber bands.
Unfortunately, you have no control over this and sometimes it can be impossible to make all the objects line
up as you expected.

An easy way to align multiple objects is to use the Align menu option. After selecting the objects, right-click
on one of them and select Align. The options to choose from are Tops, Middles, Bottoms, Baseline, Lefts,
Centers, Rights, and ToGrid. Each of these options aligns multiple objects to a single object. The object that
is used as the basis for alignment is the last object selected. You can identify the last object selected by seeing
which one has the sizing handles on it.

Formatting Strings
String output can be formatted in a way similar to formatting a cell in a spreadsheet. You can modify its font
and border. There are also formatting options that are specific to Crystal Reports. These options consist of
suppressing the field, letting the width grow, rotating the text, paragraph specific formatting and hyperlinks.
Almost every option on this dialog box can be set using formulas. This is discussed in more detail in Chapter
7. The formatting options are available for textbox objects, formulas, report fields, and special fields. Access
the formatting dialog box by right-clicking on the field and selecting Format.

The first tab of the Format Editor dialog box is the Common tab (see Figure 2-18). The properties shown on
this tab are common to most of the report objects available. These properties are described in Table 2-2.

www.CrystalReportsBook.com 33

Figure 2-18. The Common tab.

Table 2-2. Properties of the Common Tab

Property Description

Can Grow Allow the field to expand if the object isn't big enough to hold the data.
The field will only expand vertically and result in the height increasing.
The width does not expand.

Close Border on Page Break If a field has a border, and the field extends to another page, then this
will close the border on the first page.

Horizontal Alignment Sets the alignment to Left, Right, Center or Justified.

Keep Object Together Do not let the object cross over into another page.

Suppress Hides the object.

Suppress If Duplicated Hide the object if it had the same value in the prior record.

Text Rotation Rotate the text to a specified angle. A value of 0 is the default and the text
displays horizontally. A value of 90 rotates it vertically upward. A value of
270 rotates it vertically downward.

Tool Tip Text Use the formula editor to set a string that is displayed when the mouse
hovers above the field.

The next two tabs on the Format dialog box are the Border tab and the Font tab. Both of these tabs are
simplistic and don't have anything unusual in them. The Border tab lets you specify which sides should have
a border and it also lets you can change the shading around the object. The Font tab has properties to change
the font and use different effects such as strikethrough and underline.

The third tab of the dialog box is the Paragraph tab. This is useful when using multi-line objects and you
want it to be formatted like a standard paragraph (see Figure 2-19). It lets you customize the indentation on

www.CrystalReportsBook.com 34

the left and right sides. You can also specify a different indentation for the first line so that it is inset from the
rest of the lines. You can also set the line spacing, the reading order (left to right or vice-versa), and specify if
it uses plain text or text formatted as RTF.

Figure 2-19. The Paragraph tab.

The last tab is the Hyperlink tab. This is used for fields that store text to be used as a hyperlink to a website,
an email address, a file, or another report. When you select what type of hyperlink it is, the middle frame
changes so that you can enter the appropriate type of link. You can either hardcode the hyperlink or use the
formula editor to make it dynamic depending upon what is in the field. Depending on the type of object, the
hyperlink tab might be unavailable.

The Text Object
The text object is used to display text, database fields, and special report fields. Each text object can display
one of these or a combination of all three. After adding a text object to the report, click on it to edit it.

When writing form letters, using the textbox object with a combination of text and database fields is very
helpful. Text in form letters is different than standard reports because it doesn't follow the standard format of
showing individual rows and columns. It is displayed in paragraph format with a single space between each
word/number. The textbox makes this possible by automatically trimming the spaces around each word and
number. Thus, you can insert database fields in with standard text. Any extra spaces around the database
fields are not be shown. If you have ever programmed in HTML, then you are familiar with this concept.
Within HTML, no matter how many spaces you put between words, they will be separated by only one
space.

The properties that apply to the Textbox object are covered in the section Formatting Text Objects.

The Field Object
The standard field object displays data from a table or a formula. The field object is added to your report by
dragging and dropping it from the Field Explorer window onto your report. The Field Explorer window is

www.CrystalReportsBook.com 35

normally docked on the toolbar to the left side of the screen. If you don't have it there, you can pull it up by
clicking on the menu items and selecting View/Other Windows/Document Outline. The properties that
apply to the field object are covered in the Formatting Text Objects section.

The Line Object
The line object does exactly what you expect. It draws a line. There isn't a whole lot you can do with this
except change its color, the width and its style (single line, dashed line, etc.) It does have one interesting
feature that solves a common problem with line objects. The problem occurs when you draw a vertical line
on a detail section. There are times when the detail section has a field that can grow down the report and
make the section longer than expected. You expected the line to be unbroken down the report and now that
isn't the case because the line is too short. To fix this, set the property ExtendToBottomOfSection to True. This
insures that no matter how short your line is, the end point will be the bottom of the section. If it is a
horizontal line, this always move to the bottom of the section.

The Box Object
Like the Line object, the Box object isn't too exciting. You can change its color, width and style. One nice
feature about it is that you can change its properties to round the edges. Depending on how you set the
properties, you can make it elliptical or even turn it into a circle. The properties that affect this are
CornerEllipseHeight and CornerEllipseWidth. Rather than modify these directly using the Properties window at
the bottom right hand corner of the screen, it is much easier to use the Format dialog box. The second tab is
the Rounding tab. It has a picture of what the box looks like and below it is a slider. As you move the slider
from the left to the right, it increases the curvature of the edges. When the slider is at the far right, the box has
turned into a circle. Once you click OK, the dialog box modifies the corner ellipse properties for you.

The Picture Object
The picture object is used for displaying the following image file formats: BMP, JPG, TIFF, and PNG. It
doesn’t display GIF files. The formatting options are similar to the other controls in that it has the tabs
Common, Border, and Hyperlink with similar functionality. There is a Picture tab, shown in Figure 2-20,
that lets you resize, scale and crop the image. If at any point you feel that you resized or scaled it improperly
and you want to restore it back to its original size, click the Reset button.

www.CrystalReportsBook.com 36

Figure 2-20. The Picture tab of the Picture object's dialog box.

The Chart Object
The Chart object lets you add a chart to your report. There are a variety of options to choose from so that you
can customize however you need to. There is so much to cover with this object that it was given a separate
chapter. See Chapter 10 for more information.

The OLE Object
The OLE object lets you embed objects inside of your report. Some examples are embedding Word
documents or Excel spreadsheets. This is a feature that was brought forward from previous versions of Crystal
Reports it isn't used much anymore.

The Hyperlink Object
The Hyperlink object is used for giving your report the ability to show a hyperlink to an on-demand
subreport. When a user clicks on the hyperlink, the subreport opens in the viewer and gets its own tab. This
creates an on-demand subreport. The user can toggle back and forth between the two tabs to see both reports.

The Special Field Object
The Special Field object is used for printing all report-related information. For example, it can print the
current page number or the total number of pages. This field was created as a catch-all for all the
miscellaneous types of report information that you need. Table 2-3 lists the available fields and what they
mean. These fields are treated the same as a database field object. They can be added to the report by
themselves, or included in a textbox object. They also have the same formatting options described in the
Formatting Strings section.

www.CrystalReportsBook.com 37

Table 2-3. Special Fields.

Special Field Description

DataDate The date when the report was last refreshed.

DataTime The time when the report was last refreshed.

FileAuthor The file author that is stored with the report.

FileCreationDate The date when the report was created.

Filename The report's file name.

GroupNumber The current group number.

GroupSelection The group selection formula.

ModificationDate The date the report was last modified.

ModificationTime The time the report was last modified.

PageNofM Prints "Page X of Y".

PageNumber The current page number.

PrintDate The date the report was printed.

PrintTime The time the report was printed.

RecordNumber The current record number.

RecordSelection The record selection formula.

ReportComments The report comments that are stored with the report.

ReportTitle The report title.
TotalPageCount The total number of pages.

www.CrystalReportsBook.com 38

3

Integrating Reports

After creating a report and formatting it to your satisfaction, the report needs to be integrated into the
application. There are many ways to do this which makes chapter 3 one of the more complicated to
understand, and yet one of the most important in the book. Understanding the best way to integrate reports
into your application is essential for designing the best reporting solution.

There are a lot of different ways to integrate a report into an application, and some of the ways can be
combined together. The different combinations create an interesting matrix of possibilities for you to choose
from. If this is your first experience to writing reports with .NET, it may seem a little overwhelming. To try
to make this as easy as possible to understand, I first give you an overview of each option and show its benefits
and drawbacks. This lets you see the big picture and learn which options work for which types of applications.
Afterwards, I break down each option and show the steps and programming code to integrate it into your
application. This is done for Windows applications as well as ASP.NET applications. If you get to the
examples and something doesn’t make sense, just refer back to the beginning of the chapter for an
explanation.

Sound good? Now let’s get started!

The first reporting related decision is whether the report will be previewed before it gets printed. Many users
like to see the report prior to printing it so that they can verify that it will print the information they are
looking for. This is especially true for reports that let the user choose how to filter and display the data. For
other reports you may not want to give the user the option to preview the report. An example is a reporting
application that runs a batch print job at a scheduled time during the night. Requiring user intervention
would cause the program to hang indefinitely until someone arrives to push the right button. Another
example is a group of standardized reports that get printed every month. It is quicker for the user to select the
reports to be printed by clicking on checkboxes and printing them all at once. Since the format and filters
never change, making the user preview each report is unnecessary.

Previewing reports can be done in a Windows application as well as an
ASP.NET application by adding a CrystalReportViewer control to the form/web page. Using the viewer
control gives you many benefits. The first is obviously that the user can see what is going to be printed prior
to printing it. If it isn’t exactly what they want, they can close the preview window and repeatedly modify the
report parameters until the report delivers the necessary information. No waste and another tree gets to live.
Another benefit is that the viewer control has numerous built-in reporting functions that save you a lot of
work. Rather than writing the code to export reports in different formats, the viewer has a button on the
toolbar that does it for you. In fact, the viewer is so useful that I would guess that most of the applications you
write are going to use it.

Of course, the viewer isn’t ideal for every situation. It requires user intervention for it to be useful. Another
downfall of the viewer is that it can only view one report at a time. You can’t pass multiple reports to it.
Displaying multiple reports simultaneously requires using multiple viewers.

If you decide to send reports directly to the printer and not use the viewer control, you are going to have to
write the programming code to implement the functionality that you need. This could include writing code
for printing the report, selecting the page range, and exporting the report to other formats. That’s a lot of
work! Of course, Part II of this book shows you all the programming code to do this, but it’s still your
responsibility to implement it in the application and test it.

www.CrystalReportsBook.com 39

If you don’t use the viewer control, there will be a certain amount of code you always have to write. This code
serves as the foundation adding more reporting functionality later. Part II of this book builds upon this code
for advanced runtime customization.

To start coding, declare and instantiate an object variable from the ReportDocument class. The
ReportDocument class has all the properties and methods necessary for loading and printing a report.

Note
Although I didn’t mention it before, if you use the viewer control to preview a report, the
ReportDocument class is still used to load and print the report. The viewer control does all
the work for you behind the scenes and you don’t have to be aware of it.

Dim MyReport As New CrystalDecisions.CrystalReports.Engine.ReportDocument

MyReport.Load("C:\Report1.rpt")

MyReport.PrintToPrinter(1, False, 0, 0)

The first line of code declares an object variable MyReport and instantiates a new instance of the
ReportDocument class. As I said earlier, this ReportDocument class is responsible for managing all report related
functions.

The second line of code calls the Load() method to load an Untyped report into memory. The last line of code
calls the PrintToPrinter() method to send the report to the printer.

Note
Once you get into advanced programming techniques, you’ll learn that there are times
when you will use the viewer control and still create a ReportDocument object variable.
This is when you want to perform runtime customization. See Part II of the book for
more information.

The PrintToPrinter() method needs to be explained in more detail because the parameters passed to this
method aren’t intuitive. The parameters of the PrintToPrinter() method are listed in Table 3-1.

Table 3-1. PrintToPrinter() parameters.

Parameter Description

nCopies The number of copies to print.

Collated Set to True to collate the pages.

startPageN The first page to print. Set to 0 to print all pages.

endPageN The last page to print. Set to 0 to print all pages.

The first parameter, nCopies, sets how many copies of the report to print. If more than one copy of the report
is being printed, the second property tells whether to collate the copies or not. Passing False tells it to print
each full report prior to printing the next copy. If nCopies is set to 1, then the collated parameter is ignored.
The last two parameters, startPageN and endPageN, set the page range. Pass it the first page to print and the
last page to print. To print the entire report, pass 0 to both parameters.

When using the viewer control, you also have the option of using a ReportDocument component (see the
example in Chapter 1). The ReportDocument component gives you a visual way of telling the viewer which
report you want to print. If you are writing a Windows application, adding the ReportDocument component
lets you preview a report without writing any code whatsoever. The ReportDocument component also gives
you the benefit of being in design mode and letting you see the name of the report that is going to be printed
without having to read the programming code.

www.CrystalReportsBook.com 40

At this point in the chapter, you’ve had the chance to examine when you should use the viewer or when to
send reports directly to the printer. If you use the viewer control, you have the option to add a
ReportDocument component. The next major decision to make is how you want to instantiate the report
object.

.NET applications are fully object oriented and thus everything is considered an object. Reports are no
different. Crystal Reports .NET uses the ReportDocument class to manage all report functionality. Before a
report can be printed, you must instantiate a new ReportDocument object variable and load the report into it.
The steps for instantiating the object and loading the report are dependent on the report type and
classification. A report can be classified as either Strongly-Typed or Untyped.

Strongly-Typed
When you create a report, .NET automatically creates a report class within the current project. Just like all the
other classes in a project, the report is instantiated by its class name. Reports that are referenced by their class
name are called Strongly-Typed reports. These reports are compiled into the applications executable file.

Untyped
When you save a .NET project, each report in the project is saved as a separate “.rpt” file. Although these files
are saved in the same folder in your .NET application, they are independent of the project. In other words,
you can copy these .rpt files to another folder and use them in another project. You could also copy them to a
reporting library to be shared among many applications. Report files are separate from the current project
have to be referenced by their filename and path. Reports that are referenced by their filename, rather than
their class name, are called Untyped Reports. When you build your application, these reports will not be part
of the application.

Each report type has its own benefits and drawbacks. Untyped reports are useful for applications that let the
user choose from a dynamic list of reports. An example of this is when the user browses to a directory location
and selects which report to print. You can also use Untyped reports to share reports between different
applications. This lets you create a reporting library that is shared on the network. Another benefit is that if
you distribute an application and later find that you have to modify a report, you can change the report
without rebuilding the application. A drawback of using Untyped reports is that when deploying your
application you have to remember to include each report file in the deployment project (unless its stored on
the network). If you are writing an ASP.NET application, you also have to make sure that the security settings
let you access the report.

Strongly-Typed reports are the easiest to work with in your application. Since the class is already part of your
project, it is pretty simple to reference it by name. You also get the benefit of having the report compiled
within the application’s executable and you don’t have to distribute the report file. There are two limitations
however to using Strongly-Typed reports. First is that you can’t reference reports designed by other
applications or by the Crystal Reports stand-alone application. Second is that if you modify a report, you have
to recompile and redistribute the application’s executable.

Note
Report types are not mutually exclusive within an application. For example, choosing to
open a report as a Strongly-Typed report doesn’t mean you can’t open other reports as
Untyped reports. The purpose of classifying reports into types is for determining the best
way to write your application. Each report can be opened in the way that is best suited
for it.

That’s it! Now that you’ve read about the various options available for integrating reports into your
application, look at table 3-2 for a summary of each option.

www.CrystalReportsBook.com 41

Table 3-2. Summary of report integration options.

Integration Option Key Points

CrystalReportViewer Lets the user visually verify.
Saves you programming effort.

Printing to the printer Print report without user intervention.
You have to instantiate a ReportDocument object variable.
Could require a lot of programming.
Useful for printing batch reports or printing standard reports.

Adding the ReportDocument
component

Must be used with the viewer control.
Gives you a visual way of specifying which report to print.

Untyped reports Used when you have to specify the report by its filename.
Allows you to share reports between applications.
Report changes don’t require recompiling and redistributing the
application.
Can be added to reporting library.

Strongly-Typed reports Used when the report was created within the same application that is using
it.
Coding is easier than using Untyped reports because the report is a class
within the project.
Modifying a report requires recompiling and redistributing the application.

The next two sections take each option and show you the exact steps for implementing each one in your
application. The first section is specific to Windows applications and the second section is for writing
ASP.NET applications.

Windows Development
Each of the integration options presented in the previous section have a specific way that they must be
implemented to work properly. This section discusses the details of each option and walks you through the
steps to implement them in a Windows application.

Previewing Reports with the CrystalReportViewer
Most applications give the user the ability to preview a report before printing it. With Crystal Reports, this is
controlled by the CrystalReportViewer control. In fact, using the viewer is the only way to preview a report in
your application. The viewer is found in the Toolbox at the bottom of the other components. Double-click
on it to add it to your form.

www.CrystalReportsBook.com 42

Figure 3-1. The CrystalReportViewer previewing a report.

Figure 3-1 shows the viewer previewing a report. Along the top of the viewer is a toolbar with a variety of
navigational buttons. In the center is the report preview window with a Group Tree window to the left of it.
Along the bottom is a status bar that shows the page number information and the current zoom factor.

By default, the toolbar buttons and Group Tree window are all enabled. Each of these features has a
corresponding property that can be set in design mode and during runtime so that can turn them on or off.
For example, a report that doesn't have any groups certainly doesn't need to show the Grouping Tree
window. You may also want to turn off all these features so that you can create a customized preview form
using your own buttons. Having a customized preview form lets you control the user interface by using your
own style of buttons. This insures that your application has a consistent look and feel across all forms.

Tip
The status bar can’t be modified. There are no properties to turn it on or off. Nor are
there any properties to control what it displays. You can work around this limitation by
extending the bottom of the viewer below the edge of the form or panel it is located in.
This results in hiding the status bar.

Table 3-3 lists the properties of the CrystalReportViewer. The properties let you enable or disable the features
of the viewer. Table 3-4 lists its methods. The methods let you implement the viewer's functionality by
calling them from your own buttons. Most of these are self-explanatory, but the tables make good reference
material.

www.CrystalReportsBook.com 43

Table 3-3. CrystalReportViewer Properties

Property Description

DisplayBackgroundEdge A background edge creates a border around the edge of the report page in
preview mode. Setting this to False makes the edge of the page flush
against the viewer's window.

DisplayGroupTree Toggles the Group Tree window on and off.
DisplayToolbar Toggles the toolbar on and off.
EnableDrillDown Sets whether the user can drill down on reports.
ShowCloseButton Sets whether the Close button is available.
ShowExportButton Sets whether the Export button is available.
ShowGotoPageButton Sets whether the GotoPage button is available.
ShowGroupTreeButton Sets whether the GroupTree button is available.
ShowPrintButton Sets whether the Print button is available.
ShowRefreshButton Sets whether the Refresh button is available.
ShowTextSearchButton Sets whether the Search button is available.
ShowZoomButton Sets whether the Zoom button is available.

Table 3-4 CrystalReportViewer Methods

Method Description
CloseView() Pass a null value to close the current view. Pass a view name to close a

specific view.
DrillDownOnGroup() Drill down on a specific group. See Chapter 12 for details on implementing

this method.
ExportReport() Show the Export dialog box.
PrintReport() Show the Print dialog box.
RefreshReport() Refresh the report view. The user will be prompted for the parameters and

logon information again.
SearchForText() Pass a string to search for. If found, it returns True and moves to the page

that has the string.
ShowFirstPage() Move to the first page of the report.
ShowGroupTree() Shows the Group Tree window. It doesn't take any parameters. There is no

corresponding method to hide it.
ShowLastPage() Move to the last page of the report.
ShowNextPage() Move to the next page of the report.
ShowNthPage() Pass an integer to move to that page number.
ShowPreviousPage() Move to the previous page of the report.
Zoom() Pass an integer to set the zoom level.

Binding Reports to the Viewer
The viewer needs to be told which report to display. This is called binding the report to the viewer. The
property used for binding is the ReportSource property. There are three ways to set the ReportSource property:

www.CrystalReportsBook.com 44

using the ReportDocument component, passing it an Untyped report filename, and passing it a Strongly-
Type report class name. Each method is covered in the next three sections.

Using the ReportDocument Component on the Viewer
Adding a ReportDocument component to the form is the easiest way to specify which report to print.
Everything about it is visual and there is no code to write. Add it to your form by going to the Components
section of the Toolbox and double-clicking on it. It will automatically display the Choose a ReportDocument
dialog box. This lets you select which report to display. The dropdown control lists all the reports that are
part of your project. Once you select which report to use, the dialog box closes and it the component gets
added to your form.

Note
The ReportDocument component has to be on the same form as the viewer control. The

viewer can’t reference a ReportDocument component on another form.

After the component is added to the form, tell the viewer to use it by clicking on the viewer’s ReportSource
property and selecting the ReportDocument’s name from the dropdown list.

When you run the application and open the form, the viewer automatically displays the report to the user.
You don’t have to write any code.

Using Untyped Reports with the Viewer
Untyped reports are, by definition, referenced by their filename. The viewer loads the report into memory
and displays it to the user. The viewer’s ReportSource property has to be passed the report’s filename.

Setting the ReportSource property can be done anywhere within your form. For example, you could call it in
response to the user clicking on a button or a menu item. In this example (and almost all the examples in this
book), I put the code in the form’s Load() event. I do this because it is easy to understand and it makes the
form preview the report immediately. In this example the report used is the Employee List report created in
Chapter 1. You should replace the report filename with your own report.

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles yBase.Load

 CrystalReportViewer1.ReportSource = "Employee List.rpt"

End Sub

Using Stongly-Typed Reports with the Viewer
Strongly-Typed reports are referenced by their class name. Create a new instance of the report class and pass it
to the viewer’s ReportSource property. As mentioned in the last section, the code in this example is called
within the form’s Load() event so that the report is displayed immediately upon opening the form. The
Employee_List class name is from the example report in Chapter 1. Replace it with the class name of the report
in your own application.

Private Sub Form1_Load(ByVal sender As System.Object, _

ByVal e As System.EventArgs) Handles MyBase.Load

 CrystalReportViewer1.ReportSource = New Employee_List

End Sub

Notice that the report’s class name is “Employee_List” and the actual report name is “Employee List”. When
there are spaces in the report name, the class name that .NET creates will use underscores instead of spaces.

Printing Reports Directly to the Printer
If you decide not to user the viewer control for previewing reports, you will have to write all the code for
loading and printing reports. The following sections show you examples of how to instantiate report objects
and send their output to the printer.

www.CrystalReportsBook.com 45

At this point in the book, the amount of code you need to write is still very limited and it is easy to
understand. Once you get into Part II of this book, you’ll see that this code serves as the foundation for
performing advanced runtime customization of your reports.

Printing Untyped Reports Directly
Printing Untyped reports without using the viewer requires a bit more coding than the examples you’ve seen
so far. First you must declare and instantiate a ReportDocument object. The ReportDocument object has
methods for loading the report into memory and printing it. Call the Load() method and pass it the report’s
filename. Call PrintToPrinter() to send the report to the printer.

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim MyReport As New CrystalDecisions.CrystalReports.Engine.ReportDocument

 MyReport.Load("Employee List.rpt")

 MyReport.PrintToPrinter(1, False, 0, 0)

End Sub

This example loads the Employee List report in the MyReport object variable. Then it calls the PrintToPrinter()
method to print a single copy of the report, including all pages.

Printing Strongly-Typed Reports Directly
Printing Strongly-Typed reports is a little easier than printing Untyped reports. With Strongly-Typed reports,
the report’s class name is part of the project and can be instantiate directly. Unlike Untyped reports, you
don’t have to use the generic ReportDocument class and you don’t have to worry about loading the report from
a file. After instantiating the report object, call the PrintToPrinter() method to send it to the printer.

Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim MyReport As New Employee_List

 MyReport.PrintToPrinter(1, False, 0, 0)
End Sub

This declares the object variable MyReport to be of type Employee_List and instantiates it. For your
application, use the class name of the report that you want to print. The PrintToPrinter() method prints a single
copy of the report.

ASP.NET Development
The CrystalReportViewer control is the interface for previewing reports in an ASP.NET application. Adding
a viewer control to a web page is as simple as dragging the control from the Toolbox onto the web page. After
it is added to an ASP.NET page, it is represented by a simple rectangle.

www.CrystalReportsBook.com 46

Figure 3-2. The viewer control as positioned on an ASP.NET page.

If you worked through the Windows example where you added the viewer control to a form, you will
immediately notice that the ASP.NET viewer looks different than the Windows viewer. When you add the
viewer to an ASP.NET page, it only displays a simple rectangle. It doesn’t show you a template of what the
viewer looks like.

Although the viewer control is very small when you add it to the web page, when you run the application it
automatically grows to fill the remainder of the web page. It expands horizontally across the page as well as
vertically down the page. This ensures that the report is readable when the page is displayed.

The viewer has a BestFitPage property (default value of True) that controls whether it fills the page or not. If
you set this property to False, the viewer control will not resize itself and the report will be displayed within
the bounds of the viewer. Setting it to False is useful when you want to limit the amount of space on the web
page that is allocated to viewing reports. Obviously, if you decide to set BestFitPage to False, you should
resize the viewer to make it large enough to comfortably display your report.

When BestFitPage property is True, the control does not expand upward. It only expands downward and
across. Any information above the viewer control remains intact and properly formatted.

Note
If the Page Layout is set to FlowLayout, all information below the viewer will be pushed
down the page so that it appears after the viewer control. If the Page Layout is set to
GridLayout, the information after the viewer control will not be pushed down. The
ASP.NET controls will overlap the viewer control. This could either make for a very
messy report or you could use it to add some interesting formatting effects.

As you can see in Figure 3-3, when the viewer is displayed in an ASP.NET page, it looks very similar to the
report preview that you’ve seen with Windows applications.

www.CrystalReportsBook.com 47

Figure 3-3. The report preview in an Internet Explorer browser.

The ASP.NET viewer control has some interesting differences between it and the Windows viewer.

There are no tabs shown along the top of the ASP.NET viewer. When you drill down on reports in a web
viewer, it opens a new page rather than showing all the tabs on a single page. There is also no Print button. A
very disappointing aspect of the viewer is that it can’t send a report to the printer. You have to use the
browser’s built-in print functionality to print the web page. This has the adverse effect of printing non-
professional reports because it prints everything in the browser window. This includes the toolbar, the group
tree and the web page information. Printing professional reports requires advanced programming techniques
which are discussed in Chapter 19.

The last thing you might notice is the “Powered by Crystal” icon at the top of the toolbar. Although this is
totally harmless, many people don’t like appearing it on their reports.4 You can get rid of this logo, or even
replace it with your own, by deleting or overwriting the GIF file on your computer. You can find it within the
Visual Studio .NET installation folder under “..\crystal reports\viewers\images\toolbar\logo.gif”

The properties of the Web viewer control are similar to that of the Windows viewer control. It has properties
for changing the look of the viewer by hiding the toolbar, hiding the toolbar buttons and hiding the Group
Tree window.

Although the Windows and Web viewer controls have properties that perform the same functionality, they
often have different names. There are also certain properties that are unique to each control. Table 3-5
compares the common properties of each control so you can see the similarities and differences.

4 Later in the book you’ll see more examples of where Crystal Decisions has decided to stamp their logo within your
report output. I’m sure their marketing department loves this, but I consider it unprofessional. With a little work all
these logos can be removed.

www.CrystalReportsBook.com 48

Table 3-5. Comparing the property names of the two viewer controls.

Windows Viewer Web Viewer

DisplayGroupTree DisplayGroupTree

N/A DisplayPage

DisplayToolbar DisplayToolbar

Dock BestFitPage

EnableDrillDown EnableDrillDown

N/A DrilldownTarget

N/A HasDrillUpButton

ReportSource (DataBindings) | ReportSource

SelectionFormula SelectionFormula

ShowCloseButton N/A

ShowExportButton N/A

ShowGotoPageButton HasGotoPageButton

ShowGroupTreeButton N/A

ShowPageNavigationButtons HasPageNavigationButtons

ShowPrintButton N/A

ShowRefreshButton HasRefreshButton

ShowTextSearchButton HasSearchButton

ShowZoomButton HasZoomFactorList

N/A HyperlinkTarget

N/A PageToTreeRatio

N/A SeparatePages

Both controls have properties for hiding the different buttons, but they use different names for them. For
example, the properties of the Windows viewer that hides the toolbar buttons are prefixed with “Show”, but
the web viewer properties are prefixed with “Has”. The Dock property of the Windows viewer is similar to the
BestFitPage property in the Web viewer.

There are certain properties that only belong to the Windows viewer and not the web viewer. For example,
there are more buttons in the Windows toolbar than the web toolbar. As a result, the properties to hide these
buttons aren’t in the web viewer. The web toolbar is missing the buttons for Close, Export, GroupTree, and
Print. The Close button is missing because there are no tabs displayed for drilling down into the report detail.
The Export and Print button are missing because the web viewer can’t perform either function. The
GroupTree button is missing because the user isn’t allowed to directly turn this off. If you want to give the
user this ability, add a button to the web page that toggles the value of the DisplayGroupTree property.

The web viewer also has properties that aren’t in the Windows viewer. The DisplayPage property hides the
report preview when it is set to False. The web viewer also has properties that are HTML target values. When
initially opening the report’s web page or opening a sub-report, you can set whether the new page opens in
the same browser window or in a new window. Table 3-6 shows the possible values. These values can be
assigned to the HyperlinkTarget and DrilldownTarget properties.

www.CrystalReportsBook.com 49

Table 3-6. Hyperlink target values.5

Target String Value Description

_blank Opens the page in a new, unframed window.

_parent Opens the page in the immediate frameset
parent.

_self Opens the page in the current frame.

_top Opens the page in a full, unframed window.

The Windows viewer uses tabs along the top of the form to display different pages of data as the user drills
down into the report for more information. As mentioned earlier, there are no tabs in the web viewer control.
When a user drills down into group details and sub-reports, a new web page is generated to display the
information. Rather than using tabs to look at the different pages, the user has to click on the Back and
Forward buttons. To make this a little easier to navigate, the web viewer control has a button for moving up
to the parent level. This is called the DrillUp button. When report is at the top-most level, this button is
disabled.

The PageToTreeRatio property sets how wide the Group Tree control is. It represents the relationship
between how wide the viewer is compared to how wide the Group Tree is. The number entered for this
property tells how many units the report page is compared to one unit of the Group Tree control. For
example, if the number is 1, then the two areas have a 1:1 ratio and they are equal sizes. Thus, the page is split
in half. If the number is 4, the two areas will have a 4:1 ratio, which makes the width of the Group Tree
control use 20% of the total browser width. A good number to start with is 4 or 5.

The SeparatePages property determines whether the report uses different pages or not. If the property is set
to True, each web page displays a single report page. If the property is False, the entire report is displayed on a
single web page and the user has to scroll up and down.

Caution
Setting the SeparatePages property to True is the most efficient because Crystal Reports
only has to process enough information to display one page at a time. Setting the
SeparatePages property to False can cause a long delay to rendering the page. Crystal
Reports has to process the entire report before it can display it.

Binding Reports to the Web Viewer
After adding a viewer to the web page and setting its properties, the report needs to be bound to the viewer.
This can be done with any of the three options listed earlier in the chapter: using the ReportDocument
component, using Untyped reports, and using Strongly-Typed reports.

Using the ReportDocument Component on the Viewer
The ReportDocument component makes it easy to specify which report the viewer is supposed to display.
Add a ReportDocument component to the web page by double-clicking on the ReportDocument
component. The ReportDocument component is listed in the Components section of the Toolbox. When
you add a ReportDocument component to your form, it automatically displays the Choose a
ReportDocument dialog box. This lets you select which report will be displayed. The dropdown control lists
all the reports that are part of your project. For this example, it will only show the Employee List report.

5 These are the standard target values used with HTML hyperlinks.

www.CrystalReportsBook.com 50

Figure 3-4. The ReportDocument dialog box.

Select the Employee List report and click the OK button. This adds the ReportDocument component to your
form.

You have to associate the ReportDocument component with the viewer control so that the viewer knows
which report to display. Look at the viewer’s properties and at the very top is the DataBindings property. Click
on i t and then c l i ck on the e l lipses but ton to open the DataBindings d ia log box.

Figure 3-5. The DataBindings dialog box.

Click on the ReportSource property listed on the left. Then expand the Page item in the Simple Binding
window. It shows you the reports that were added to the page using ReportDocument component.

www.CrystalReportsBook.com 51

Select the report name and click the OK button. Once the dialog box closes, a preview of the report is
immediately displayed. Unlike Windows development, the viewer component shows you what the report
looks like while you are in design mode.

When the application runs, you have to tell the viewer to use the DataBindings property. This is done by
calling the DataBind() method. Put this code in the Page_Load() event.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles MyBase.Load

 'Put user code to initialize the page here

 CrystalReportViewer1.DataBind()

End Sub

Run the web application and you’ll see the Employee List report automatically previewed when the page
opens.

Using Untyped Reports with the Viewer
Untyped reports are referenced by their filename and they are external to the application’s executable code.
Open an Untyped report by passing the filename to the ReportSource property of the viewer. In this example,
I set the ReportSource property in the Load() event of the page. I also pass it the name of the Employee List
report that I created in Chapter 1. For your application you should pass the filename of the report you want
to display.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)

Handles MyBase.Load

 CrystalReportViewer1.ReportSource = Server.MapPath("Employee List.rpt")

End Sub

A second way to bind an Untyped report to the viewer is to set the ReportSource property in the
DataBindings dialog box. Look at the Property Window for the viewer and at the very top is the DataBindings
property. Click on it and then click on the ellipses button to open the DataBindings dialog box.

When the dialog box opens, click on the ReportSource property and then click on the Custom Bindings
Expression option. Within the text area enter the report’s full path name and enclose it in quotes. You should
also be aware that there is no Browse button for this property. You have to type in the file path exactly.

www.CrystalReportsBook.com 52

Figure 3-6. Setting the custom binding expression.

Caution
Be careful when entering the report filename in this dialog box. It is a common source of
problems. First of all, the file path must be accessible by the report server and you must
have permissions. Secondly, always put quotes around the file path string. Otherwise
you will get an error when the viewer attempts to open the report.

Using Strongly-Typed Reports with the Viewer
Strongly-Typed reports are referenced by passing an instance of the report class to ReportSource property of
the viewer. In this example I pass a new instance of the Employee_List class to the ReportSource property. For
your application you would pass the class name of the report you want to display.

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) _

Handles MyBase.Load

 CrystalReportViewer1.ReportSource = New Employee_List

End Sub

Caution
When using Untyped or Strongly-Typed reports, don’t call the viewer’s DataBind()
method. If you call DataBind() after setting the ReportSource property, the ReportSource
value is reset and the report won’t display. I see this mistake a lot because people assume
that calling the DataBind() method is a requirement for using the viewer. This isn’t the
case at all. It’s only necessary if you set properties within the DataBindings dialog box. If
you do need to call the DataBind() method, call it prior to setting the ReportSource property
in code

www.CrystalReportsBook.com 53

5

Using Parameters and Formulas

As Crystal Reports has become increasingly advanced over the years, the number of ways to customize reports
has also increased. However, passing data to a report hasn’t changed much. Parameters are still the preferred
method of passing data to a report. This chapter explores how to create parameters, query the user for input,
and use parameters to customize a report. Parameters have been a very effective way to getting user input, but
parameters are showing their age and are ripe for improvement now that Crystal Reports have been integrated
into .NET. Formulas address some of the parameters’ weaknesses. They are easier to work with during
runtime and are less complex to set up. This is discussed in more detail in Chapter 16.

Inputting Parameters
Crystal Reports considers parameters to be the programming language equivalent of a constant data type. The
parameter is assigned a value when the report loads and that value never changes. A parameter is like any
other field on the report: It can be displayed on the report, used in filters, and used to change the formatting
of report objects.

In their simplest form, parameters are used as an easy way to let the user enter a value. At another level, they
can be thought of as a way of creating advanced input boxes. Parameters can have default values defined in
such a way that the user is able to enter the value by selecting it from a predefined list in the combobox. The
programmer controls how many options a user has in the combobox. The section on default values details the
setting up of parameters in this way. When a report loads, parameters get their values by displaying a dialog
box to the user. This dialog box prompts the user for information and it has input fields for the user to enter
one or more values. Once the user closes the dialog box, the report uses the user input to generate the report.
An example of this is a report that prints records between a valid data range. Parameters confine the beginning
and ending date ranges.

Adding Parameters
Parameters are another type of report object. The steps to add and modify them are similar to what you've
already been doing. Add a parameter by clicking on the Field Explorer tab (on the left side of the IDE by
default) and right-clicking on Parameter Fields. Then, select the New menu option. Clicking on an existing
item allows the option to edit, delete or rename the item. Figure 5-1 shows this menu.

Figure 5-1. Menu option for adding a new parameter.

www.CrystalReportsBook.com 54

Once you select New, the Create Parameter Field dialog box appears, shown in Figure 5-2.

Figure 5-2. The Create Parameter Field dialog box.

This dialog box has three textboxes at the top, for entering the necessary properties: the parameter's name, the
prompting text and the value type. The Name property is how the parameter is referenced in the report.
Running the report triggers the display of the Prompting Text, which should describe what the user is asked
to enter. The Value Type property selects the data type for the parameter field. All the available data types are
listed in this dropdown box.

The lower half of the dialog box lets you set the options for the data that the parameter can store. Table 5-1
describes four options.

Table 5-1. Options for parameter fields

Option Description

Discrete value(s) The user must enter must a single value.

Range value(s) The user enters two values that are the beginning and ending points of
a range. The range includes the values entered. For example, if you
entered a range of 1,000 and 1,999 then it would include all numbers
from 1,000 up to and including 1,999.

Discrete and Range values The user can enter both discrete and range values.

Allow multiple values Allow a parameter to accept more than one value.

The option to allow multiple values is used with discrete values and range values. For discrete values, the user
can enter multiple single values and they are each treated individually. For range values, the user can enter
multiple sets of ranges and each range is treated separately from the other ranges entered. A parameter can also
have a collection of both discrete values and range values.

Boolean parameters can be thought of as being similar to checkboxes or option buttons. With checkboxes,
each value is independent of the other. That is, selecting or changing one checkbox has no effect on other
checkboxes. This is the default behavior of Boolean parameters. Option buttons are used in groups and each
is mutually exclusive of the other. Selecting one will automatically turn off all others in the same group. The
Place in Parameter Group option lets you place a Boolean parameter in a parameter group. Give it a group
number and set whether the parameters in that group are mutually exclusive to each other. If the parameters
are mutually exclusive, only one Boolean parameter can be assigned to True at a time. If the user sets two or
more parameters to True, only the most recent will keep its value; the others are reset to False.

www.CrystalReportsBook.com 55

The Create Parameter Field dialog box for Boolean data types has different options. When you change the
Value Type property to Boolean, the lower half of the dialog box changes to reflect the new options (see
Figure 5-3).

Figure 5-3. The Create Parameter Field dialog box for Boolean data.

Setting the Default Values
Default values give the user a list of values to choose from, which saves the user from the chore of memorizing
all the available values that could be entered. Default values also restrict what can be entered. This prevents a
user from making a typographical error. 6

One drawback of using default values is that they create additional overhead and increase the risk of error
because it goes against the methodology of Object Oriented Programming (OOP). The goal of writing
applications using OOP techniques is to consolidate all the information about a business object within its
respective classes. This gives you encapsulation and makes it easier to maintain your code. Setting default
values within a report breaks this rule because you are storing information about an object outside of its
classes. In fact, this data is being stored in a separate file entirely. This requires additional documentation
stating that all rules regarding an object's default values must also be replicated to the related reports. If there
is a bug in the report, both the report and the business objects would have to be debugged. This creates
additional work during testing.

The best method is to not set default values within the report; instead use the .NET application to maintain
this. Since the .NET front end is used to get input from the user before printing the report, logic can be
added here to pre-populate the front end with the appropriate default values that are derived from the class.

Of course, not everyone is going to write fully compliant OOP applications, nor will every report warrant the
extra time required to fully integrate it into the .NET application. That being the case, this chapter explains
how to create and use default parameters within a report.

Note
Default values aren’t used with ASP.NET applications. With an ASP.NET application,
Crystal Reports isn’t able to prompt the user to enter a value for each parameter. You are

required to set each parameter during runtime prior to viewing the report. Thus, default
values lose their significance with ASP.NET applications.

6 In CR.NET default values have numerous bugs and do not work as expected. Make sure you have the latest service
pack if you plan on using default values in your reports.

www.CrystalReportsBook.com 56

Default values are added by clicking on the Set Default Values button on the Create Parameter dialog box.
This brings up the Set Default Values dialog box. As Figure 5-4 shows, this is a fairly complex dialog box.
This is because it allows the entry of every possible combination of values for each parameter type. That’s a lot
of combinations!

Figure 5-4. The Set Default Values dialog box for string data types.

It was mentioned earlier that default values can be designed so that the user is presented with a listbox
showing all the possible values. The Set Default Values dialog box is where this is done. Within this dialog
box, one can create either a single default value or a list of default values. If a single default value, the input
box is pre-populated with that value.7 If you create a list of default values, the user, when entering a value for
the particular parameter, can select one of those values from a combobox.

The middle of the dialog box is the central part of setting default values. The left side is the place to enter a
default value in the textbox. Click on the right arrow to move it to the list of possible default values. There is
no limit to the number of values added to the right listbox.

An alternative to manually typing all the default values by hand, if entering a lot of default values, is to pull
them from existing tables. This neat trick is performed by selecting from the top two dropdown boxes a table
and a field to get the values from. Once the two items are selected, the values are pulled from the field and put
into the listbox on the left. Clicking on the arrow keys allows one to select and transfer to the default value list
any number of these items. Alternately, to import a list of default values from a text file, click on the Import
Pick List button.

Tip
The options to pull a list of values from a table or from a text file are better served by
creating your own interface using .NET. Both of these options are just a mediocre attempt
at creating a data-bound combobox. In Crystal Reports, there is no way to create a data-
bound control for parameter values. This is just too complex for a reporting tool to
implement. So presenting a static list of values from a table or text file is the next best
option. Using this technique results in the problem that if your database were updated,
you would have to come back to this report and update the list of possible values. But

7 This requires installing the latest service pack.

www.CrystalReportsBook.com 57

with .NET report integration, you can provide the user with a true data-bound combobox
on a form in your application. This is a more practical solution to implement and it
insures that the user always has a current list of values to choose from.

There are two options that are unique to string values. Refer again to Figure 5-4. You can limit the length of a
string size and set the edit mask in the lower left corner of the Set Default Values dialog box. Limiting the
length of the string allows you to set the minimum length and the maximum length. However, these options
do not exist if using parameters with a numeric data type. Instead, set a valid range by entering minimum and
maximum values.

The bottom right corner of the dialog box is the place to go to for setting a description for each value, as well
as the sorting order. This is similar to the functionality of a data-bound combobox because of the option to
show a description rather the actual value.8 This is useful for having the user select a table's primary key by
clicking on the description rather than the numeric id. The values can be sorted in ascending, descending and
natural order.

Closing the Set Default Value dialog box brings back the Create Parameter Field dialog box. Now that the
parameter has a stored default value, the checkbox Allow Editing of Default Values is no longer grayed out (it
is checked by default). When this is checked, the user can enter a new value in addition to selecting an item in
the list of default values. Unchecking this option then requires the user to select an item from the list of
values, which prevents him or her from entering an invalid value.

Entering Parameters when Running Reports
When a report has parameters, the user is prompted to enter values when the report is loaded, but before it is
printed. After the user enters the values, the report is shown in the viewer or sent to the printer. Figure 5-5 is
the Enter Parameter Values dialog box.

Figure 5-5. The Enter Parameter Values dialog box.

At the top is a description of what information can be entered. Below that is the prompt that is assigned to
the parameter. The bottom of the dialog box is where the user enters the value(s) for the parameter field.
Click on the Next button to go to the next field. Clicking on the Cancel button at any time cancels the
report. Nor will it be displayed in the viewer. If the user refreshes the report, this dialog box gets displayed
again.

8 This requires installing the latest service pack.

www.CrystalReportsBook.com 58

If you have used Crystal Reports 8.5, then you might notice that .NET treats mutually exclusive Boolean
parameters differently than 8.5 does. With 8.5, mutually exclusive Boolean parameters were grouped together
as a single step on the dialog box and you selected which one should be set to True. The other parameters
within that group remained False. With .NET, this is no longer the case. Each parameter is shown separate
from the others. If you select True for more than one parameter, only the most recent one will be True. The
others will be reset back to False. Unfortunately, .NET doesn’t tell you that this is happening nor does it give
any indication that the parameter is part of a mutually exclusive group. Once again, this is just another reason
to manage default values within your .NET application and not rely upon the report.

Caution
If you run a report and get the error “Operation illegal on linked parameter” it is because
a formula references a parameter, but that parameter isn’t used on the report. To fix this
error make sure that the parameter appears on the report.

www.CrystalReportsBook.com 59

13

Data Connectivity

The backbone of every report is the data it prints. Large corporations merge data on servers into reports that
consolidate and chart information from a dozen or more tables. Small businesses optimize their report
distribution and expand their client base by providing their data in an XML format and letting companies
from around the world generate reports on it. Home offices often do simple tasks such as tracking and
printing monthly sales figures from an Access database or an Excel spreadsheet.

Crystal Reports is designed to work with many types of data. Reports can be generated regardless of where the
data is stored; SQL Server, MS Access or even the Outlook email repository. Crystal Reports affords a many
ways to connect to databases; learning each method can be quite an undertaking. This chapter, along with
Chapter 17, sorts out these options and presents them in an easy to read format. You can determine which
method best meets your needs and how to quickly implement it.

All database connectivity is built around one of two models: the Pull Model and the Push Model. The Pull
Model is the simplest to implement and is very easy to learn because it doesn’t require writing any
programming code. Reports designed to use the Pull Model make everything automatic. Crystal Reports does
all the dirty work: creates the connection, reads the data, populates the report and then closes the connection.
The Pull Model is covered in this chapter. The Push Model, which is covered in Chapter 17, is just the
opposite. You write the code to do all the work in your program. You have to open the connection, get the
data into memory, pass the data to the report, and close the connection.

So why would anyone ever want to use the Push Model? Who would want to when they know that the Pull
Model Crystal will do everything for them? The answer is no different from any other choice your make when
writing software. Tasks that require more effort allow more functionality. Since the Pull Model is very simple,
it’s less flexible than the code intensive Push Model.

This chapter focuses on connecting to databases using the Visual Studio IDE. The IDE makes it easy to
connect to a data source and generate reports without having to write any programming code. Chapter 17 in
Part II of this book shows the how to’s of solving more complex reporting problems by writing programming
codes that connects to data sources using the ReportDocument object.

Note
If you are using datasets in a report, this is part of the Push Model. See Chapter 17 for
implementing datasets.

Implementing the Pull Model
The Report Expert uses the simplest form of the Pull Model to create reports. Within the Report Expert is the
Database Expert, where the data source(s) that the report connects to and the tables that have the data are
defined. The Report Expert, generates a default report layout and builds, behind the scenes, all the data
connections necessary. The only thing you have to do is call the proper method to either preview or print the
report. All the examples in the book prior to this chapter used the Pull Model. This was done so that you
could focus on report design and layout issues, unencumbered with worries about the intricacies of database.
As you can see, implementing the examples didn’t require any knowledge about data connectivity.

However, there are three aspects to the Pull Model you need knowledge of. They are: adding a data source,
linking tables, and using multiple data sources.

www.CrystalReportsBook.com 60

Adding Data Sources
The Pull Model uses the Database Expert dialog box as the interface for selecting data sources for your report.
It is a visual expert for opening data sources, finding tables within the data sources, and linking their related
fields together. To get to it, run the Report Expert, or right-click on an existing report in design mode and
select Database | Add/Change Database.

The Database Expert uses two tabs: the Data tab and the Links tab. The Data tab, shown in Figure 13-1, is
the way to add data sources to the report. It shows two windows: Available Data Sources and Selected Data
Sources.

Figure 13-1. The Data Tab of the Database Expert.

The Available Data Sources window lists different categories of data sources. Table 14.1 lists these available
data source categories.

www.CrystalReportsBook.com 61

Table 13-1. Available Data Sources

Data Source Description

ADO.NET DataSets Found within the Project Data category, these are the DataSet classes
listed in the Visual Studio Project Explorer window. They give you the
flexibility to tie your report to virtually any type of data.

Current Connections Found within the Project Data category, select from any connections
already established within the Server Explorer.

OLE DB (ADO) Builds a connection string to access data sources using an OLE DB driver.
It gives you a two screen wizard which asks you for the data source to
connect to and any relevant information regarding its location and logon
information.

ODBC (RDO) Connect using an ODBC driver by selecting an existing System DSN9.

Database Files Select a PC database file using its file location.

Favorites Choose from commonly used data sources you added to your Favorites
list. Existing items can be added to the favorites list by right-clicking on
them and selecting Add To Favorites. A Favorite can be renamed by
clicking on it and pressing the F2 key.

History Choose from data sources that have been used for other reports within the
current project.

ADO.NET (XML) Found within the More Data Sources category, it retrieves records by
specifying an XML file path. You can also select an existing ADO.NET
dataset.

Access/Excel (DAO) Found within the More Data Sources category, it retrieves records using a
DAO recordset that accesses a Microsoft Access database or Excel
spreadsheet.

Field Definitions Only Found within the More Data Sources category, it specifies a field
definition file. Per the documentation, this is only for backwards
compatibility and isn't used for new development.

To select the data source from the Database Expert dialog, click on the proper category node to expand it.
This triggers a dialog box which asks for information about the data source. The dialog changes to match the
needs of each data source. This information can range from a simple file path to a database server name and
the appropriate logon credentials. Upon entering the information, the dialog box closes and the data source
name is shown in the Database Expert and listed under its category. Under the data source name is the list of
available tables, views and stored procedures.10 Click on the plus signs next to the individual items to expand
the list.

Add the tables you need to your report by selecting them and clicking on the Add Table button. Double-
clicking on the table will also add it to the list. When all have been added, go to the Links tab to establish the
relationship between the tables.

9 You should only use System DSN’s. File DSN’s and User DSN’s are buggy.
10 If you don't see everything listed in the Database Expert (particularly stored procedures), right-click the report and
select Designer | Default Settings. Go to the Database tab and click on the items you want to see in Database Expert.

www.CrystalReportsBook.com 62

Tip
There is one small quirk about the Available Data Sources window you should be aware
of. It occurs when you click on the plus sign to expand a node and a data source dialog
pops up. Once you close the dialog box there is no option to open the dialog box again.
You have to click on the minus sign to close the node and then click on the plus sign to
expand it again. This triggers the dialog box to open again. After adding a data source to
that node, this isn't an issue because there will now be an item listed as the first item and
clicking on it lets you add another data source.

Linking Tables
Whenever there are two or more tables, they need to be linked so that Crystal Reports knows how they are
related. For example, a pet store that wants to print a list of its products by Animal Id needs to build a report
using an animal table and a product table. To match the product to the appropriate type of animal, both
tables will be linked by the Animal Id. It would be impossible to determine which products are associated
with which animal without this link. The Links tab, shown in Figure 13-2, sets the linking fields.

Figure 13-2. The Links tab.

When the Links tab is first displayed, it creates default links. This is the equivalent of Crystal's "best guess"
for the relationships between the tables. In an effort to make it easier for you, Crystal Reports tries to figure
out which fields in each table should be linked to each other. It does this based upon indexes and fields that
have the same name and data type.

Tip
To get the most benefit out of the auto-arranged links, design your tables with field
names that use a consistent naming convention and have well thought out indexes. This
will result in a higher probability that Crystal Reports will create the appropriate default
links.

www.CrystalReportsBook.com 63

The default links are not set in stone. You are free do delete or add more, according to your needs. To delete a
link, simply click on it (to select it); then click on the button labeled Delete Link. You can also just press the
Delete key after selecting it. To add a new link, drag and drop the field from one table onto the matching
field in the other table.

There are a couple of buttons that are helpful for managing links. The Auto-Arrange button rearranges the
tables into an easier-to-read layout, which is useful when handling a report with many tables. A multitude of
tables makes difficult the visualization of their relationship with one another and the overall structure. The
Auto-Link button rebuilds the links based on whether you want to link by field name or by index. This comes
in handy for undoing any new links you added, should you want to start from scratch. The Clear Links
button removes all the links between the tables. The Link Options button opens the Link Options dialog box,
shown in Figure 14 -3.

Figure 13-3. The Link Options dialog box.

The Link Options dialog box establishes the type of relationship between the two fields. It sets the type of
join (Inner, Left Outer, Right Outer, or Full Outer) as well as how the fields are compared (equal to each
other, less than, etc.). Table 13-2 shows a list of the different linking options and how they affect the resulting
data.

Table 13-2. Join Options

Join Type Resultset Description

Inner Join Records from the left table are matched with records from the right table.
Only records with an exact match are included.

Left Outer Join All records from the left table are included. Field values are included if there
is a matching record in the right table . NULL values are stored in the
corresponding fields if there is no matching record in the right table..

Right Outer Join All records from the right table are included. Field values are included if
there is a matching record in the left table. NULL values are stored in the
corresponding fields if there is no matching record in the left table.

Full Outer Join Every record from both tables is included. When records from both tables
match, the fields in the new recordset are filled in as normal. The other
fields are set to NULL if there is no matching record for one of the tables.

The Order Links button sets the order in which the links between the tables are created. This is used only
when there is more than one link shown. The tables will be linked automatically, in the order that they are
shown in the dialog box. The default linking order processes the links on the left before the links on the right.
Changing the default linking order is useful when there is a hierarchy of tables joined together and the order

www.CrystalReportsBook.com 64

to which they are joined is important. This can happen when you are using a link to return a subset of records
from two tables, and these records must therefore be linked to another table. Changing the order of the links
changes the resulting data.

Using Multiple Data Sources
Complex reports often require printing data of different origins. This can happen when you have tables in a
SQL Server database and they need to be linked to tables in an Oracle database. There can also be SQL Server
databases on different servers on the network. Although Crystal Reports is capable of printing such reports, it
doesn’t always run flawlessly. Using multiple data sources has the potential for a variety of problems. There is
no easy fix.

 Crystal Reports, by design, takes the data connectivity information that is saved with a report and generates
SQL statements with it. The statements are then delivered to the database server. Although every major
database vendor claims to be compliant with the SQL standard, they each have their own subtle differences
that can cause them to reject the SQL language of another database. But Crystal Reports doesn’t have the
capability to, within a single report, generate SQL that is compatible with multiple variations of the SQL
specification. It will inevitably create non-compatible SQL for one of the databases. You will have a
compatibility issue.

That is not all. Different database servers manage their standard data types differently, chiefly in the way they
store them internally. The way one database represents an Integer can be totally different from another
database. When Crystal Reports tries to link these two fields together, it won’t be able to because they look
like different data types.

While it is true that Crystal Reports is designed to work with the majority of database servers, it doesn’t imply
that the database servers themselves will work with one another. Since every database tries to be better than
the next database, companies are more concerned about performance than compatibility. There are
limitations with reports using different databases.

Fortunately, there are some general rules you can follow to reduce the headaches caused by these problems.
You should be able to generate the reports you need if you follow the following rules (with a little trial and
error).

When linking tables together, only use fields that are of the String data type. String is the most consistent data
type among different database servers and has the least likelihood of causing problems. This is no guarantee
against all problems, however. For example, a string can be represented by variable and fixed length data type
and this can create incompatibilities.

Rather than try to link tables from different data sources together, use subreports to print the same data. The
benefit of using subreports is that they are treated individually. When Crystal Reports generates the SQL
statements for the sub-report, it does so independently of the main report. Also, it has only to worry about
working with a single database driver. This independence eliminates a lot of potential problems. Using
subreports also allows for more flexible linking options between a main report and subreport. You aren’t
limited to linking with strings and you can also use formulas to perform data type conversions when
necessary.

There are reports where using a subreport isn’t an option. For example, if all the detail fields need to be
printed side by side, you can’t use subreports because the fields will have to be printed underneath the others.
In this circumstance, find out if your database lets you create links to outside databases. Putting the links
within the database server itself puts the responsibility of managing this data within the server. Crystal
Reports benefits because now it only has to use one database driver to retrieve the data. You also get better
performance because the database server maintains the additional connection and links.

www.CrystalReportsBook.com 65

Secured Databases
Most databases have security implemented in them. They require valid user credentials before accessing the
data. This means that you have to pass a User Id and Password to the database prior to printing the report.
Crystal Reports handles security differently, depending upon how the report is bound and the database used.

In most circumstances, a Windows application displays a login dialog box prompting the user to enter their
user credentials. After entering the credentials, the user can login. However, this isn’t always the case. If you
are using an MS Access database with a database password or if you are printing from an Excel spreadsheet
using OLE DB, the login dialog box isn’t compatible. If you are writing an ASP.NET application, it doesn’t
have the capability to prompt the user for their credentials. In both of these examples the user won’t be able
to print the report. Rectifying this problem requires passing the user credentials during runtime. See Chapter
17 for a thorough discussion of connecting to every type of data source during runtime.

Caution
When using integrated security with ASP.NET applications, the SQL Server database
should be on the same server as the web server. There are known issues when IIS tries to
connect to SQL Server and then Crystal Reports tries to connect again. It can’t perform a
“double-hop” and the connection fails. See Microsoft Knowledge Base article 176377 for
more information.

Connecting with Stored Procedures
As mentioned earlier in the chapter, stored procedures can be used as a data source just like a table. Crystal
Reports can open a stored procedure, retrieve the data and print it. The one thing that can make a stored
procedure unique is if it has input parameters.

For a stored procedure to execute, it must have a value for every input parameter. Crystal Reports
automatically creates report parameters when it sees that the stored procedure has one or more input
parameters. There is one report parameter for every stored procedure parameter and they will have identical
names and data types. When the report runs, the user is prompted to enter a value for each parameter.
Internally, Crystal Reports passes these report parameters to the stored procedure.

The following code is a sample stored procedure from the Northwind database.
CREATE PROCEDURE CustOrderHist

@CustomerID nchar(5)

AS

SELECT ProductName, Total=SUM(Quantity)

FROM Products P, [Order Details] OD, Orders O, Customers C

WHERE C.CustomerID = @CustomerID

AND C.CustomerID = O.CustomerID

In this stored procedure, there is one input parameter called @CustomerId that is a 5 character string. When
this report is selected as the data source for a report, Crystal Reports automatically creates a parameter called
@CustomerID as a String data type. The report prompts the user to enter a Customer Id when it is ran. The
report passes this value to the stored procedure; the stored procedure only returns records with a matching Id.

Note
If you want your application to directly pass the parameters to the stored procedure, you
have to set the parameter objects during runtime. The user won’t be prompted with the
parameter dialog boxes and the report will run seamlessly. See Chapter 17 for the steps to
set report parameter values during runtime.

www.CrystalReportsBook.com 66

If you are using two stored procedures and linking them together, make sure that the parameters have
different names. When Crystal Reports creates parameters for each stored procedure, it doesn’t have the
capability to create a new alias for the parameter names. Consequently, it will only create one report
parameter with that name and it won’t know which stored procedure to assign the parameter to. Make sure
that parameters use unique names.

www.CrystalReportsBook.com 67

Part II
Programming Reports

Advanced report designers aren’t satisfied with using the built-in functions to customize reports. They
want to integrate their .NET applications with Crystal Reports during runtime. Part II shows you how
to seamlessly integrate your reports into .NET with runtime customization of report objects and
modifying parameters. Dynamic data connections let you connect to virtually any data source. For the
most advanced reporting functionality, develop Report Web Services or upgrade to the stand-alone
version of Crystal Reports and use .NET to program the RDC and the RAS. Part II shows you how to
take your reporting skills to the expert level.

www.CrystalReportsBook.com 68

14

Learning the Report Object Models

Part I of this book taught the details of designing reports by laying out the report objects in the different
report sections and connecting to data sources. When the report was finished its design and layout stayed
the same every time it was run. The data that it prints will change, but the report format is locked. With
Crystal Reports .NET, reports have the flexibility to be dynamic. .NET programmers have full access to
the properties of a report and the underlying report objects. These properties can be read and many of
them can be written to. You get the power to create a reporting solution that takes user input and
customizes each report prior to printing it. This can range from changing the formatting of report
objects, modifying the grouping and sorting, and changing the data source. The more you learn about
runtime customization the more you will find out what you can do. This chapter serves as the
foundation for building your knowledge throughout the rest of the book.

The reason that you have so much power to modify reports is because .NET treats every report as an
object-oriented class. The entire object model is exposed to your .NET program. Whether you program
with VB.NET or C# isn't important. The object model can be accessed by any of the .NET languages.

There are three ways to use the Crystal Reports object model. The first is to use the ReportDocument
class to reference virtually every class and property of the report. The second way is to use the methods
and properties of the CrystalReportViewer control. When compared to the ReportDocument class, the
viewer only has a small subset of properties and methods. The viewer lets you modify the properties that
effect logging in to a data source, setting report parameters, and deciding which report to preview. The
last way to work with the object model is to subscribe to the events that are triggered while the report is
previewed and printed. These events are useful for knowing what part of the report is being looked at
and what the user is doing. This chapter goes into detail on all three ways of working with the report
classes.

If you have experience with Crystal Reports 8.5 Developer Edition, then you are probably familiar with
modifying reports during runtime. One of the key features of the Developer Edition was that the Visual
Studio 6.0 developer had a greater amount of control over the report during runtime. In fact, a developer
could write an entire report from scratch during runtime! The report classes that come with .NET are
not this sophisticated. While you do have a lot of flexibility with modifying an existing report, you are
limited to using the existing report objects. You can't create new report objects nor can you change the
fields that the current objects link to. If you want to create reports and add new report objects, you have
to purchase a separate developer’s license. However, this license is extremely expensive and is only
practical for companies with a large budget.

Basic Customization
No matter what type of runtime customization you want to perform, there are three basic steps that you
need to know. Customizing reports always starts with the same premise: declare and instantiate a
ReportDocument object, modify its properties, and print or preview it.

Chapter 3 gave a thorough explanation of the different ways to integrate reports into an application
(Strongly-Type versus Untyped). If you need a refresher, refer to the sections on binding reports for a
discussion of the pros and cons of the different methods of binding reports.

www.CrystalReportsBook.com 69

Note
The code that implements runtime customization is the same for both WinForms
development and ASP.NET applications. The ReportDocument class is used with both
types of applications. ASP.NET will only be mentioned for special circumstances.

Step 1: Declare and instantiate the ReportDocument object variable.

An object variable can either instatiate the report class directly (Strongly-Typed reports) or it can
instantiate the ReportDocument class and then load the report into memory (Untyped reports). Since
runtime customization requires the use of Strongly-Typed reports, the examples in this chapter will use
this binding method.

Note
In the examples throughout this chapter and the rest of the book, the report class
being referenced is called CrystalReport1. This is the default report name that is
given by the report wizard. When you implement the sample code in your
applications, replace the name CrystalReport1 with the class name of the report you
want to print. All the code samples are generic and will work with every report.

‘Declare and instantiate an object variable of the report class

Dim MyReport As New CrystalReport1

Step 2: Modify the properties of the report object.

After instantiating the report variable, all the properties and methods of the ReportDocument object are
available to you. Set the properties that need to be modified. The different properties of the report object
are explained throughout all the chapters in Part II of this book.

In this example, the record selection formula is changed. The report variable MyReport (from Step 1) is
used to get a reference to the DataDefinition object and change its RecordSelectionFormula property.

MyReport.DataDefinition.RecordSelectionFormula = “{Orders.Order Date}>#01/01/2004#”

The above line of code is very simplistic for purposes of illustrating how to change a property of the
ReportDocument class. Real applications aren’t so simple and you can save yourself effort by using the
same code in different projects. A lot of times you will find yourself taking a specific piece of code and
rewriting it so that it can be generic enough to be used by multiple applications or put into a reporting
library. In many of the examples in this book, I do this by writing a method that gets passed the report
object and any necessary parameters. The method modifies the properties of the report object that was
passed to it and exits. In these examples, the method’s code will be shown but not the code that calls it. I
won’t repeat the code that declares and initializes the report variable and previews it. It is assumed that
you know that these methods should be called after the report object is declared and initialized, but
before previewing the report. If you need a refresher, you can refer back to this chapter.

Step 3: Print or preview the report.

To preview the report, pass the report variable to the viewer control. To print the report, call the
PrintToPrinter() method of the report variable. To be consistent, my examples always preview the report.
Thus, the sample code will assign the report variable to the viewer control.

CrystalReportViewer1.ReportSource = MyReport

Those three steps are always used for performing runtime customization. The next question you might
be asking yourself is where to put the code. You can put this code anywhere in the form. If you want to
load the form immediately and customize the report, put it in the Load() event. There are time that you
are going to call this code after the user has entered various data that specifies how the report should be
customized. If that’s the case, put the code in response to the click event of an OK button that confirms

www.CrystalReportsBook.com 70

they are finished inputting data. The following code sample shows you a complete code listing and it
demonstrates where to put the code for calling a generic method to modify report properties.

Listing 14-1. A template for modifying reports.
Private Sub Form1_Load(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim MyReport As New CrystalReport1

 ‘Call all report modification code here.

 ‘As mentioned in Step 2 above, this can be a method that is passed the report variable.

 ‘For illustration purposes, I’m calling a generic method that changes

 ‘the report title. The code for ModifyTitle() isn’t shown here.

 ModifyTitle(MyReport, “Runtime Demo”)

 CrystalReportViewer1.ReportSource = MyReport

End Sub

If you are writing an ASP.NET application, this code can be put in the Page_Load() event. See Chapter
3 for a more information about writing ASP.NET applications.

Note
All report customization must be done prior to previewing or printing the report.
No changes are allowed once the report is generated. For example, you can’t use
.NET to change the way a field is formatted depending upon the current group
value. Making dynamic report changes while the report is running requires writing
formulas and using conditional formatting (discussed in Chapters 7, 8, and 9).

ASP.NET Template
Printing reports within an ASP.NET application requires a slightly different template than the Windows
template shown in Listing 14-1. To see the template for ASP.NET, please refer to the hardcopy version
of Crystal Reports .NET Programming.

The ReportDocument Object
The ReportDocument class is the base class for all reports. Its properties give an application the ability to
thoroughly examine all the report objects. Many of these properties, but not all of them, have write
capabilities so that you can modify their values.

Each report is a class that inherits from the ReportDocument class. Figure 14-1 shows the Object Browser
window with the class for a blank report, CrystalReport1. You can see that ReportClass is the base class
for the report. This class is derived from the ReportDocument class. The members listed to the right of the
figure belong to the ReportDocument class.

www.CrystalReportsBook.com 71

Figure 14-1. Object Browser view of the ReportDocument class.

The ReportDocument class has seven other classes that it references. Figure 14-2 shows the
ReportDocument object model. The class thoroughly exposes all the objects of a report. Since the coverage
is so broad and hits many topics covered in this book, the relevant classes are covered in different
chapters. This chapter gives you an overview of all the classes and goes into detail on the two generic
classes SummaryInfo class and ReportOptions class.

www.CrystalReportsBook.com 72

+Export()
+InitializeReport()
+Load()
+OpenSubReport()
+PrintToPrinter()
+Refresh()
+SaveAs()
+SetCSSClass()
+SetDataSource()

-Database : Database
-DataDefinition : DataDefinition
-ExportOptions : ExportOptions
-FilePath : String
-HasSavedData : Boolean
-IsLoaded : Boolean
-IsSubreport : Boolean
-Name : String
-PrintOptions : PrintOptions
+RecordSelectionFormula : String
-ReportDefinition : ReportDefinition
-ReportOptions : ReportOptions
-SummaryInfo : SummaryInfo

ReportDocument

+EnableSaveDataWithReport : Boolean
+EnableSavePreviewPicture : Boolean

ReportOptions

+KeywordsInReport : String
+ReportAuthor : String
+ReportComments : String
+ReportSubject : String
+ReportTitle : String

SummaryInfo

-See Chapter 17
Database

-See Chapter 16
DataDefinition

-See Chapter 15
ReportDefinition

-See Chapter 19
ExportOptions

+ApplyPageMargins()

-PageContentHeight : Integer
-PageContentWidth : Integer
+PageMargins
+PaperOrientation
+PaperSize
+PaperSource
+PrinterDuplex
+PrinterName : String

PrintOptions

Figure 14-2. The ReportDocument object model.

Every report in Visual Studio is saved as a class. Since it is a class, you have to declare an object variable
and instantiate it. There are two ways to create this object variable. You can declare and instantiate it
yourself, or you can add a ReportDocument component to your form. Both of these methods were
discussed in Chapter 3. Either method gives you access to the properties of the object variable to manage
the different collections.

Retrieving Summary Information
Every report has a variety of summary information saved with it. This information is set by the report
designer and it usually consists of things such as the report author, the report title and report comments.
This information is set during design mode by right-clicking on the report and selecting Report |
Summary Info. The class that maintains this summary information is the SummaryInfo class. Although
you can override the property values, more than likely, you will only want to read from these values.
This information was set by the report designer and won't need to change during runtime. There are
only a half dozen properties that this class exposes (see Table 14-1).

Table 14-1. Properties of the SummaryInfo class.

Property Description
KeywordsInReport The keywords in the report.
ReportAuthor The author of the report.
ReportComments Comments about the report.

www.CrystalReportsBook.com 73

ReportSubject The subject of the report.
ReportTitle The title of the report.

The following example displays a message box showing the author of a report. You can see that accessing
these properties is very simple. CrystalReport1 is the class for a generic report. Replace it with the class
name of your own report.

Dim MyReport As New CrystalReport1

MessageBox.Show(MyReport.SummaryInfo.ReportAuthor)

Setting the Report Options
The ReportOptions class only has a few properties that can be set. They are listed in Table 14-2. This
information is set during design mode by right-clicking on the report and selecting Designer | Default
Settings and selecting the Reporting tab. These properties were discussed in Chapter 2.

Table 14-2. Properties of the ReportOptions class.

Property Description
EnableSaveDataWithReport Saves the latest data with the report.

Allows report to be opened without a
live data connection.

EnableSavePreviewPicture Saves a thumbnail picture of the report.
EnableSaveSummariesWithReport Saves data summaries with the report.

The following example sets the EnableSaveDataWithReport property to True.
Dim MyReport As New CrystalReport1

MyReport.ReportOptions.EnableSaveDataWithReport = True

Connecting to the Data Sources
The Database class is used for examining the tables used in a report and their relationships with each
other. It's also used for setting the login information before opening the report. This class is described in
Chapter 17.

Modifying the Printing Options
The PrintOptions class stores the options for how a report is sent to the printer. This can consist of the
destination printer, the paper orientation or the page margins. This is normally set during design mode.
While the majority of an application's reports will use the same settings, you can override the default
settings for specific reports. Table 14-3 lists the properties.

Table 14-3. PrintOptions properties.

Property Description
PageMargins Gets the page margins.
ApplyPageMargins() Sets new page margins.
PaperOrientation Switch between Landscape and Portrait.
PaperSize Set the paper size using pre-defined size constants.
PaperSource Set the tray that the paper is printed from.

www.CrystalReportsBook.com 74

PrinterName Change the printer by passing a string that exactly
matches the printer name listed in the Printers Control
Panel.

Each of these properties is easy to modify. In same cases you will have to use a predefined constant to set
the property (e.g. PaperOrientation and PaperSize).

Caution
Changing the printer name can cause the report output to be scrambled. Each
printer uses a unique printer language for producing output. If the new printer
doesn’t use the same printer language as the default printer that the report was
designed to use, then the report will not print correctly. For example, if a report was
designed for use with an HP printer, then it is okay to switch between similar
models of an HP printer. But printing this report to Acrobat PDFWriter will result in
an unreadable PDF file.

Listing 14-4. Change a report’s printer settings.
Dim MyReport As New CrystalReport1

MyReport.PrintOptions.PaperOrientation = CrystalDecisions.[Shared].PaperOrientation.Landscape

MyReport.PrintOptions.PrinterName = “HP LaserJet510”

MyReport.PrintToPrinter(1, False, 0, 0)

Exporting Reports
If your application only sends reports to the printer, it is lacking the functionality to make your data
accessible to a variety of applications. Crystal Reports lets you export a report in many different formats
so that different applications can read the data. For example, you can export report data to an Excel
spreadsheet so that an end user can perform a statistical analysis on the data. The ExportOptions class has
the properties that specify the exporting options. This is discussed in Chapter 19.

Referencing and Formatting the Report Objects
The ReportDefinition class is responsible for maintaining the collections of the basic report objects. These
objects consist of the Areas collection, Sections collection and the ReportObjects class. Each Section class
contains the report objects that are within that section. You can modify the formatting properties of any
of these objects. This is discussed in Chapter 15.

Changing Report Objects
Every report can have many types of fields that are used to generate the report, but don't have to appear
directly on the report. Some examples are grouping fields, parameter fields, and formula fields. Even
though these fields may not be shown directly on the report, they are updateable during runtime and can
be used to change the report’s appearance. For example, you can change the grouping field so that the
report sorts and summarizes in a new way. The DataDefinition class manages the collections that control
these aspects of the report. These collections are discussed in the appropriate chapters throughout the
book.

CrystalReportViewer Object Model
Previewing reports is done with the CrystalReportViewer control. The viewer can be used as an
alternative to the ReportDocument class for modifying reports during runtime. It is a lightweight control
and only exposes a few properties. You can use it when you only need want to perform basic tasks.

www.CrystalReportsBook.com 75

To see the CrystalReportViewer object model and how to program it, please refer to the hardcopy
version of Crystal Reports .NET Programming.

Responding to Events
Report classes are built with events that let you respond to the actions that the user is doing as they
preview a report. Your application can subscribe to these events and be alerted when they occur. The
events that can be subscribed to are primarily associated with the actions that a user takes while
previewing a report. Since a user can only preview a report using the CrystalReportViewer, the events are
written for this class. The ReportDocument class only has the InitReport() event that can be subscribed to.
Table 14-4 lists the reporting related events.

Note
The CrystalReportViewer also has the standard events associated with all controls
(e.g. Click, GotFocus, etc.) However, these are not unique to Crystal Reports, so if you

need more information about them, please consult MSDN.

Table 14-4. The primary events for reports.

Event Description
InitReport() Fired after a report has been successfully loaded. This is the only event

available for the ReportDocument class. This is not available for the
CrystalReportViewer class.

Drill() Fired when the user drills down on a field.
DrillDownSubReport() Fired when the user drills down on a subreport.
HandleException() Fired when an exception occurs.
Navigate() Fired when a user moves to another page on the report.
ReportRefresh() Fired when the user refreshes the report data.
Search() Fired when the user enters a search string.
ViewZoom() Fired when the user changes the zoom percentage.

The Drill() event is fired whenever a user clicks on a field to drill down on it. It passes an object of type
DrillEventArgs. This object can be examined to find the group level the user is currently looking at as well
as the new group level being moved to. Table 14-5 lists the properties of the DrillEventArgs event type.

Table 14-5. Properties of the DrillEventArgs event type.

Property Description
CurrentGroupLevel Returns an integer representing the current group level.

CurrentGroupName Returns a string representing the name of the current group level.

NewGroupLevel Returns an integer representing the new group level.

NewGroupName Returns a string representing the group level name.

The DrillDownSubReport() event is similar to the Drill() event and it is fired when the user drills down on a
subreport. Although the functionality is similar, this event passes an object of the

www.CrystalReportsBook.com 76

DrillDownSubreportEventArgs type. It gives you information such as the subreport name and the page
number. Table 14-6 lists the properties of this event type.

Table 14-6. Properties of the DrillDownSubreportEventArgs event type.

Property Description
CurrentSubreportName The name of the current subreport.
CurrentSubreportPageNumber The page number that the subreport is on.
CurrentSubreportPosition Returns a Point object that tells the position of the subreport on the

viewer.
Handled Set to true if you do not want the subreport to be drilled down to.
NewSubreportName The name of the new subreport.
NewSubreportPageNumber Sets the page number to drill down into.
NewSubreportPosition Returns a Point object that tells the position of the new subreport on

the viewer.

The HandleException() event is used for capturing exceptions and handling them. This is discussed in
detail in the section Handling Exceptions.

The Navigate() event is fired when the user moves to another page in the report. This can be done by
paging forward through the report or jumping to the beginning or end of the report. Table 14-7 lists the
properties for the NavigateEventArgs event type.

Table 14-7. Properties of the NavigateEventArgs event type.

Property Description

CurrentPageNumber The page number that the report is on.
Handled Set to True if you do not want to move to the new page.
NewPageNumber The page number that the user is moving to.

The ReportRefresh() event is fired when the user refreshes the report data. The only property for this
event is the Handled property. It is the same as the other events.

The Search() event is fired when the user searches for text within the report. Table 14-8 lists the
properties for this event type.

Table 14-8. Properties of the SearchEventArgs event type.

Property Description
Direction Gets or sets the direction to be backward or forward. Use a variable of

the SearchDirection type.
Handled Set to True if you do not want to search for the text.
PageNumberToBeginSearch Gets or sets the page number to start searching.
TextToSearch Gets or sets the string to search for.

The ViewZoom() event is fired when the user changes the zoom level of the preview image. This event lets
you find out the current zoom level and what the new zoom level will be. Table 14-9 lists the properties
for this event type.

www.CrystalReportsBook.com 77

Table 14-9. Properties of the ZoomEventArgs event type.

Property Description

CurrentZoomFactor Gets the current zoom factor.
Handled Set to true if you do not want to change the zoom factor.
NewZoomFactor Gets the new zoom factor.

Handling Exceptions
Crystal Reports gives you the ability to handle any errors that might occur while printing and
previewing. The benefit to handling the error yourself is that you can customize the error handling
process. For example, you could write the error to a log file or you can gracefully exit the process without
throwing an error message at the user.

The CrystalReportViewer class has a HandleException() event that you can subscribe to. It is fired whenever
an error occurs. This event has properties to tell you the exception class that was raised and lets you
specify a new text message for the error. Table 14-10 lists the properties for the ExceptionEventArgs()
type.

Table 14-10. Properties of the ExceptionEventArgs event type.

Property Description
Exception The class of exception that was raised.
Handled Set to True if you do not want to the error triggered.
UserData Overrides the error message.

Unfortunately, the HandleException() event is not available if you are using the ReportDocument class. If
you are printing a report directly with the ReportDocument class, there is no error-related event that you
subscribe to. You have to use the standard Try-Catch error handling statements that you use for the rest
of your application.

Try

 Dim myReport As New CrystalReport1()

 myReport.PrintToPrinter(1, False, 0, 0)

Catch

 ... do error handling here

End Try

www.CrystalReportsBook.com 78

Also by Brian Bischof

The .NET Languages: A Quick Translation Guide

If you are looking for a quick way to translate code between VB.NET and C#, this book is just what
you need. Reviewers have praised “The .NET Languages” for its no-nonsense writing style that is so
uncommon in today’s computer books. Concise and to the point so you can take programming code
and convert it to either .NET language without wasting time. The jewel of this book is the
translation tables found at the beginning of each chapter. Every syntax keyword is clearly listed with a
one-to-one mapping between languages. You’ll keep this book close to your computer for these tables
alone. The remainder of each chapter follows up with explanations for avoiding the programming
traps you can fall into if you aren’t careful. As a bonus, VB6 programmers will find that the entire
VB6 syntax is included so that you can upgrade your skills to .NET in record time.

Buy “The .NET Languages” at bookstores worldwide and on Amazon.com (ISBN 1-893115-48-8).
Also available in Italian (ISBN 88-8331-395-X) and French (ISBN 2-212-11107-X).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

