
The Inside Track
�XML Reprise�
February 2001

The Federal Trade Commission (FTC) has given the acquisition of Great Plains
by Microsoft the green light. It�s a major milestone. This month Great Plains is
hosting another Technical Conference in Fargo. It�s a major learning event. The
extent of the connection between the two events is that they both occurred in
February and that they both are major events that affect the entire Great Plains
virtual community.

Learning

The conference affects folks like us a bit more than the non-technical people in
the virtual community. Another major impact on us is, or soon will be, XML. At
the conference I presented a session called �Getting data to the Web with XML
and XSL.� In the November Solution Developer Newsletter I wrote about XML
and gave a brief example of XSL.

I�ve been beating my brains for a way to justify reusing the material from my
session. I went looking on the Web for the percentage that people retain when
they learning something. You know, you only retain something like 40% the first
time you hear it and you retain 65% the next time. I didn�t find the number, but I
didn�t look all that hard. I found an interesting article about multiple modes of
learning. Ah but what the heck, I just think this stuff is so great and useful.

Well, just a little justification, because I wouldn�t want you to think you�re getting
away with a freebie by not going to the conference (mine was not the best or only
session by a long shot) or that having gone to the conference you wasted time
sitting through my session (ouch!). This article I found says that in the four
learning modes (self, lecture, concurrent and collaborative, see �The Circle of
Learning� at http://epaa.asu.edu/epaa/v5n7/) no one mode was superior; they
were all complementary. So repeating some information from my session here is
a good thing! If you came to the conference, then you�ll have two modes, self
and lecture, to learn from. Just think how smart you�ll be.

Now that I�ve done a little work on my guilt complex, lets have some fun.

Looking

I wrote this prototype for a lookup in a Web browser. It uses a ton of XML and a
pretty fair chunk of XSL. A lookup should allow the user to locate and select
information of interest. Often a lookup will provide an abbreviated view of some
existing information. Once the user has located the appropriate data, then the
whole record is retrieved and displayed.

http://epaa.asu.edu/epaa/v5n7/

 Page 2

A lookup needs a fair amount of flexibility since the user may only have partial
information about the record being sought. For instance, the user may be trying
to pull up a Customer but only knows the customer�s phone number. In another
instance, perhaps the customer�s zip code and date of last order is known. As
the size of the database table grows, flexibility becomes more important and
performance gets worse.

I had several goals for my prototype. Besides flexibility and performance, I
wanted to use XML and XSL and show that XML and XSL could be used
successfully with other existing technologies. Applications typically need lots of
these lookups, so I wanted to make building them a pretty simple operation,
reusing code as much as possible.

Layout

In Figure 1 you will see a simple example of the lookup. This lookup is built with
an HTML Table. There are 5 areas of interest, by rows. The top row contains 4
browse buttons. The next row contains a �Find� value and button. Then the
column headings followed by the rows of data. The last row contains a �select�
button.

Figure 1

The Next and Prior browse buttons retrieve enough data to fill the lookup with a
one record overlap. The overlap allows the lookup to request a block of data in a
stateless fashion. With current browser based applications, being stateless on
the server is a big plus. If your application is stateless it can easily move from
server to server in a server farm and there is less overhead on the server while
waiting for the users next interaction.

 Page 3

The find value is used to locate records based on the sorted column. The
column headings can be double clicked to change the sort order and by selecting
and using drag-and-drop the order of columns can be changed. A data row is
selected by double clicking or by single clicking and pressing the select button.

What�s really great is that the lookup is defined by XML, the definition is turned
into XHTML (HTML that follows the rules of XML) by XSL. Data is requested
using XML, the query is defined using XML and the requested data is returned to
the lookup as XML. XML everywhere!

Links

All of the files for the prototype are available from the Tech 2001 web site on
PartnerSource. The file is called DataWebXMLXSL.zip. You can access all the
Tech 2001 materials at:

ftp://ftp.greatplains.com/partner_source/tech2001_winter/

The direct link for my session is:

ftp://ftp.greatplains.com/partner_source/tech2001_winter/DataWebXMLXS
L/DataWebXMLXSL.zip

I would like to point out a PowerPoint presentation that should be of interest to
the entire Great Plains developer community. On Sunday morning, February
18th, Tim Brookins Great Plains Technical Fellow and Director of Platform
Services presented a Tech Conference Super Session titled �Next Generation
Technologies�. During Tim�s session he discussed the motivation, products and
technologies that are behind the next generation initiative at Great Plains. A
must view session that would be great to see live but extremely valuable
nonetheless:

ftp://ftp.greatplains.com/partner_source/tech2001_winter/FutGPTechnlgie
s/FutGPTechnlgies.ppt

Logic

How does it work? Unzip the Tech Conference .zip file and read the file called
README.DOC to install the prototype. Then follow along:

1. A URL is sent to the server. The URL specifies which lookup is
requested:
 http://localhost/�/GPLookup.asp?Lookup=Customer

2. GPLookup.asp takes the query string (the stuff after the question mark)
and using the value of Lookup, locates the Lookup definition in an XML

ftp://ftp.greatplains.com/partner_source/tech2001_winter/
ftp://ftp.greatplains.com/partner_source/tech2001_winter/DataWebXMLXSL/DataWebXMLXSL.zip
ftp://ftp.greatplains.com/partner_source/tech2001_winter/DataWebXMLXSL/DataWebXMLXSL.zip
ftp://ftp.greatplains.com/partner_source/tech2001_winter/FutGPTechnlgies/FutGPTechnlgies.ppt
ftp://ftp.greatplains.com/partner_source/tech2001_winter/FutGPTechnlgies/FutGPTechnlgies.ppt

 Page 4

file. In the example in the previous step, the XML file will be
Customer.xml.

3. GPLookup.asp loads GPLookup.xsl and using the Lookup XML, performs
a transform. A transform essentially runs an XSL program. The XSL
picks pieces of information out of the XML and uses it in the output of the
transform or otherwise modifies the behavior of the program.

For instance, the Lookup UI XML says how many rows to include in the
lookup and the XSL uses that value to generate a certain number of rows
in the data portion of the HTML table. The title of the lookup is pulled out
of the XML and inserted into the HTML title element.

4. The result of the transform is sent back to the browser where the HTML is
rendered. Code in the HTML runs when the browser windows loads to
pull in the first chuck of data. Look at Customer.html for an example of the
transformed output and at line 31 to see how the initial data is loaded.

5. The vast majority of the functionality of the lookup is held in a separate file
called GPLookup.sct as a scriptlet. A scriptlet is like a component written
in script (JavaScript in this case). The XSL transform hooks up the
scriptlet to the generated HTML so that when the user performs an action,
a method in the scriptlet is invoked to respond to the action.

For instance, if the user clicks on the Top browse button, see line 42 in
Customer.html, the Top() method in the scriptlet is called. Many of the
methods in the scriptlet retrieve data. All the methods that need data, like
Top() on line 236, work by calling another method called Send().

6. The Send() method, starting on line 110, takes information available in its
parameters and other information available in the lookup and creates a
packet of information formatted as XML.

One of the important pieces of information that is sent is the name of an
XML file that defines the query. The file name came from the Lookup XML
and was inserted into the HTML by the XSL, GPLookup.xsl. See line 4 in
Customer.xml and line 23 in Customer.html. To keep life simple, I have
named the query definition XML file the same as the lookup UI XML file
with �Query� stuck in at the end. For instance, for lookup UI XML
Customer.xml, the query definition XML file is called CustomerQuery.xml.

The parameter packet is sent to GPQuery.asp using HTTP. Look at file
Params.xml to see an example of the parameter XML.

7. GPQuery.asp receives the packet of XML. It pulls the information out of
the XML and creates a COM object called GPQuery.LookupData. It then
invokes the GetData() method in the COM object passing along the

 Page 5

parameters it received from Send(). Again, one of the most important
parameters is the name of the XML file that contains the query definition.
To test GetData() you can run an interactive test program called
TestGPQuery found at:

GPQuery\TestGPQuery\bin\debug\TestGPQuery.exe

8. The GetData() method uses the parameters, to build an SQL query that is
executed using ADO. The query definition XML file is read and used to
determine that ADO connection string, columns and other information
needed to build and execute the SQL query. See
GPQuery\LookupData.cs to see the source code for the COM component.

9. The results of the query are turned into an XML string that is the return
value of GetData(). See Results.xml as an example.

10. GPQuery.asp gets the return value from GetData() and sends the XML
back to the browser using HTTP.

11. The Send() method in the scriptlet on the browser receives the XML and
passes it to another method called Populate() starting on line 150 that
changes the table data HTML using DHTML.

 Page 6

Linkage

To help bring everything together, here is a picture that includes all these steps.

1) URL invokes GPLookup.asp with the query string.
2) GPLookup.asp transforms requested lookup with GPLookup.xsl.
3) Transform output sent back to the browser for display.
4) User action causes query request to be sent to GPQuery.asp.
5) GPQuery.asp calls GetData() in COM component GPQuery.LookupData.
6) GetData() reads Query Definition file.
7) GetData() executes the SQL query.
8) GetData() return the result as XML to GPQuery.asp
9) GPQuery.asp returns the data to the browser for display in the lookup.

Leaving

From a high level, in a simple prototype like this, I�m almost tempted to say that
Internet development won�t be so hard. With a streamlined prototype, ignoring a
lot of issues, you might be too. But in keeping with the L�s that I�ve used to head
each section of this month�s column, I want you to remember just one more.
Think about all the stuff I �left-out� of this prototype.

Browser

Data

XML
for

Data

XML/XSL
for
UI

GPLookup.asp
?

Lookup=XXX

GPLookup.sct

GPQuery.asp

GPQuery.
LookupData

1

2

3

4 5

6

7

89

 Page 7

Think about pushing data back to the server and making sure it got there
securely and completely. Know that Great Plains has teams working on security
and transparently supporting transactions.

Think about making this lookup work with a dozen different languages. Know
that Great Plains has a team working on metadata and how to represent
information in a logical, abstract fashion that allows for simple localization.

Think about customizing the UI per user or per company. Know that Great Plains
has a team working with Visual Studio for Application (VSA, which is the .NET
equivalent of VBA) and how to expose business functionality safely to customer
modification.

Think about integrating your enhancements into a full-blown web enabled
application. Know that Great Plains is architecting its next generation products
as a cooperating set of component and that who developed the component is not
a limitation to what the component can accomplish.

Think about design and management of a large, complex development effort.
Know that Great Plains is using high-level design and modeling tools like Rose
from Rational so that designers and developers can share information accurately
and completely and is creating a documented repeatable development process
that can be replicated by partners.

Lots to think about. Lots that the Platform Services folks at Great Plains will build
and you will get by using the tools, processes and techniques we will provide.

With so much to think about, it won�t be long before I�m back with more on The
Inside Track.

Later,
Karl Gunderson
Technical Evangelist

	Learning
	Looking
	Layout
	Links
	Logic
	Linkage
	Leaving

