Programmer to Programmer

Crystal Reports is one of the world's leading
software packages for creating feature-rich
reports, and now it is fully integrated with
Visual Studio .NET. With this book, you'll see
how to produce elegant and effective reports
for Windows and the Web.

Professional

Crystal Reports for
Visual Studio .NET

David McAmis

Wrox technical support at: support@wrox.com
Updates and source code at: www.wrox.com
Peer discussion at: p2p.wrox.com

What You Need to Use This Book

There are software and knowledge requirements for your successful progress through this book.

Software
O Microsoft Windows 2000 or XP Professional
Q Visual Studio .NET Professional or higher
Q SQL Server 2000 or MSDE

Knowledge

O Some knowledge of the Visual Studio .NET development environment is assumed

O Some very basic knowledge of SQL is assumed

Summary of Contents

Introduction

Chapter 1: Crystal Reports.NET Overview

Chapter 2: Getting Started with Crystal Reports.NET
Chapter 3: Report Integration for Windows-Based Applications
Chapter 4: Report Integration for Web-Based Applications
Chapter 5: Creating XML Report Web Services

Chapter 6: Working with .NET Data

Chapter 7: Formulas and Logic

Chapter 8: Working with the Crystal Reports Engine
Chapter 9: Distributing Your Application

Appendix A: Troubleshooting

Appendix B: Migrating Applications to Crystal Reports.NET
Appendix C: Crystal vs. Basic Syntax

Index

33

79
113
151
167
201
233
267
285
295
309
315

S
—

Report Integration for Web-Based
Applications

While Windows applications will still continue to be popular for some time to come, the growing trend
in application development is for web-based applications.

In this chapter, we are going to look at how to integrate and view reports from within web-based
applications created with Visual Studio .NET. In addition, we will look at some of the run-time
customizations that can be made to your reports, as well as some issues around web application
deployment. This will consist of:

Determining the correct Object Model
CrystalDecisions.Web namespace
Using the Crystal Web Forms Viewer

Customizing the Crystal Web Forms Viewer

0O 0O 0 U0 o

Passing information to the Web Forms Viewer

As we go through this chapter, we will be building forms for use in web-based reporting applications,
which demonstrate many of the Crystal Reports.NET features that can be used in your own web applications.

Obtaining the Sample Files

All the example reports and code used in this chapter are available for download. The download file
can be obtained from www.wrox.com. Once you have downloaded the files, place them in a folder
called CrystalReports\Chapter04 on your hard drive.

Chapter 4

In Chapter 4, all of the completed projects are included in the downloadable code as well as the reports
used throughout the chapter, so you can either browse through the finished projects or create your own
projects from scratch using the components provided.

You can use the code as you go through the chapter or cut and paste code samples into your own
web application.

Planning Your Application

If you are developing web applications with Visual Studio .NET, chances are you are well acquainted
with ASP.NET (and if you aren't, you soon will be!). ASP.NET is not really a language, per se, but
rather a set of interrelated technologies and components that come together in one framework to deliver
robust web applications. As a developer, you probably already know that the most important part of
creating an application is in the planning and design of the application, before the coding actually starts.
The integration of Crystal Reports into web applications is no different — a little bit of planning goes a
long way.

The first thing we will need to do, before we write a single line of code, is to determine what type of
reports we want to deliver in our web application and how they are going to be used. Are they listing or
grouped reports? Are they used to check data entry in a form before submitting it? What will the reports
look like? Will users want to print the reports from their browser or export to another format such as
PDF, RTF, or Excel? All of these questions can help you gather the information you need to design your
reports and get a handle on how they are going to be delivered.

Note: Even if you don't have your own reports to work with, you can still work through
this chapter — sample reports are available in C: \Program Files\Visual Studio
.NET\Crystal Reports\Samples\ or in the download files for this chapter.

Once you understand the type of functionality you would like to deliver to the user, you can sit down
and start planning how Crystal Reports will be integrated into your web application. Crystal
Reports.NET uses a feature-rich report viewer, available out of the box, which can be inserted onto a
Web Form and used to view reports. The viewer itself has features that are similar to the Windows form
viewer and has an extensive object model, allowing you to set the source of the report, the appearance
of the viewer itself, and what happens when different events fire, among other things.

When working with web applications, most users seem to prefer that we pop up an additional window
to display reports. This allows them to have the full browser area to view the report and we can pass
properties like the report source and viewer settings to this Web Form. This allows us to reuse one
"report viewing" form throughout the web application and just set the properties we need each time.

The options for working with reports are endless — based on a user's access rights in your application,
you could set a specific record selection formula or allow the user to set and retain parameters they use
frequently, or even establish profiles of their favorite reports, so they can run it with all of their settings
in place with one click.

114

Report Integration for Web-Based Applications

Like integrating reporting into Windows applications, the report integration should be driven by the
user's requirements, but how these features are delivered is up to you. As you go through the rest of the
chapter, think about how the different customization features could be used in your development. If you
are not at a point where you can integrate these features into your application, each of the properties,
methods, and events are grouped together by function to make it easier to come back and look them up.

A Brief History of Crystal Web Development

When Crystal Reports was first released, the Internet was still in its infancy and Crystal Reports has
grown right along beside it. With the introduction of a web component in Crystal Reports 7.0, based on
the print engine already in use with its Windows development tools, developers were able to integrate
reporting into their own web applications through the use of ASP. This first implementation of web
reporting provided a powerful tool for web developers and enabled a whole new class of reporting
applications for the web.

It wasn't long before web developers started pushing Crystal Reports on the web to its limit. While
version 7.0 of Crystal Reports provided a web engine that was suitable for small workgroup applications
of 5-10 users, it lacked the power to handle the first of many large enterprise web applications that were
being developed at the time.

A companion product, Seagate Info (formerly Crystal Info) was also introduced utilizing a similar
framework, but adding multi-tier processing to the architecture, enabling reports to be processed on a
separate machine and then viewed by the user. Unfortunately, customizing the Seagate Info user
interface, or creating custom apps that accessed this technology, proved to be cumbersome, so it really
didn't take off with developers.

With the release of version 8.0, the reporting technology took another massive leap forward, but some
of the same limitations persisted (such as scalability and security) until the advent of Crystal Reports 8.5
and the introduction of Crystal Enterprise 8.5. Leveraging the architecture and code base from Seagate
Info, Crystal Enterprise provides a robust application framework that developers can use to create
applications that can be scaled from one to ten to ten thousand users and beyond.

So where does that leave you, the Crystal Reports. NET developer? Well, to start, you don't need to buy
any additional tools or licenses to integrate reporting into your web applications — Crystal Reports. NET
provides all of the tools you need to create web-based workgroup applications.

Note: To deploy applications beyond a workgroup implementation of 5-10 users to a large number
of users you will need to purchase an additional license from Crystal Decisions. Also, if you need to
offload processing in a true n-tier application or want to schedule or redistribute reports, you may
want to consider moving your application to Crystal Enterprise (covered in Chapter 9).

The other great news is that Crystal Reports. NET builds on the web functionality found in previous
products and provides a feature-rich development environment and a rich user experience for viewing
reports on the web. If you haven't looked at the Crystal Reports web technology in a while, you are
going to be pleasantly surprised.

115

Chapter 4

Exploring the Development Environment

When creating ASP.NET web applications, you don't need a specialized editor to develop the required
components — you could just crack open Notepad and create all of the files required yourself.
Thankfully, Visual Studio .NET provides a feature-rich development environment that makes things a
bit easier when creating ASP.NET applications and there are a number of Crystal-specific components
for use in web applications.

To start with, in the toolbox under the Web Forms section, you will find the CrystalReportViewer,
which we will be working with a little later. When you drop or draw this viewer on a Web form, as
shown below, you can set a number of properties and use the viewer to display a "What-you-see-is-what-

you-get" (or WYSIWYG) preview of your report.

2% MyWebapplication - Microsoft ¥isual Basic .NET [design] - WebForml.aspx* = | = |5|
File Edit Miew Project Build Debug Data Format Table Insert Frames Tools Window Help
H-n-=2JE & B - o-E) Deby v | fikercriteria - B EREE 7
3 - 3 B 3
el ik - -l T lads 2
3% Start Page WebForml.aspx* | webFormi , aspi. b | 4 b % |[Properties o=
g_' 0B BaonaaDaa0aaos oo :;I IErystaIRepnrtViewerl CrystaIDtj
5
|| (DataBindings 155
§in] CrystalReporty
Accesskey
e SRR BestFitPage True
[enfaocococcaccas g BorderCaolor I:l
. CrystalReport¥iewer - CrystalReportViswer 1 BorderStyle MotSet
D se ReportSource or DakaBindings property ko specify a report Bordertiidth
| SOUPCE, ClientTarget Auta
o L= DisplayGroupTre True
. DisplayPage True
DisplayToolbar — True

DrildownTarget _self
EnablerillDown True
HasDrillupButton True
HasGotoPageBut True
HasPageMavigat True
HasRefreshButte False
HasSearchButtor True
HasZoomFactarl True

Height 50p=
HyperlinkTarget _self =
= [ed Solution Explorer Properties
Ready ” ”

In addition to the CrystalReportViewer, there is also a ReportDocument component available in the
Components section of the toolbox. We use this component to add strongly-typed and untyped reports
to a form. (If you just opened this book and flipped to this chapter, you may be wondering what a typed
report is, don't worry — we'll get to that a little later in the chapter.)

Finally, like most Windows applications, the majority of our report integration will take place in the
code view of the form.

Using the object models provided by Crystal Reports.NET, you have almost complete control over the
report's appearance and behavior.

116

Report Integration for Web-Based Applications

Before You Get Started

Before we can actually get into creating web-based applications, you will need to check and see if you
have all of the required components installed to run these applications. ASP.NET web applications run
on a web server that can either be located on your local machine or on another server that you have
access to that has IIS installed.

When you installed Visual Studio .NET, you may have received an error message if you did not have a
web server installed on your machine at that time. If you are working on a computer that does not have
IIS installed and the required .NET components loaded, you will need to have access to a server that
does in order to create the forms and applications demonstrated in this chapter.

For more information on installing the .NET Framework and preparing a web server for application
development, check out the Visual Studio .NET Combined Help Collection and search for
"Configuring Applications".

Starting a New Web Application with VB.NET

The first thing we need to do to get started is to create a new web application using Visual Basic .NET.
Included with the download files for this chapter are a number of projects that are related to the
different sections in this chapter. To walk through the examples that follow, you can either create a new
solution or open the one that is provided (the same applies to the other projects — you can either follow
along or create your own).

To create a new web application, from within Visual Studio, select File | New | Project and from Visual
Basic Applications, select ASP.NET Web Application and specify a name (web_viewer_basic) and
location for your project files.

New Projeck

Project Types: Templates:

423 Wisual Basic Projects

: [visual C# Projects H
(0 wisual C++ Projects) Windows Class Library — Windows
~{_]] Setup and Deplayment Projects Application Corntral Libeary

- other Projects

ASP.NET Web ASP.MET 'Web ‘Web Control
Application Service Library _I
-

& project for creating an application with & Web user inkerface

Mame: I web_viewer_basic
Location: I http: i flocalhostiweb _viewer_basic j Browse. ., |
" Add ko Solution &' Close Solution

Project will be created at httpefflocalhostweb_viewer_basic.

FMore | (a4 I Cancel | Help |

117

Chapter 4

Since you are creating a web application, the location will be a web server that you have access to and
the name of your project will actually be used to create a virtual directory on this server. (The good
news is that Visual Studio .NET will automatically do this for you if you are building the application
from scratch — there is no need to create the folder and virtual directory prior to creating a new project.)

If, however, you choose to use the supplied download code, then you should create a virtual directory
(in our case, this is C: \CrystalReports\Chapter04\web_viewer_basic) by selecting Control
Panel | Administrative Tools | Internet Information Services, and then right-clicking on Default Web
Site. This will open another menu:

?'5 Internet Information Services ;lglzl
| acton von || @ » | B OB D[2]> 80 |
Tres I Iarme | Path -
% Tntermet Information Services & | L@Seripts eifinetpublscripts
=1 * helenca il @IISndmin CHWINNT System32yinetsr v isadmin
@ Diefault FTP Site @IISSamples ctiinetpubliissamnples
= @MSADC c:iprogram files)common files\systemimsadc
: Explare @IISHeIp ctwinntihelpliishelp
Open @Webpuh Ct\Inetpubiwebpub
Browse Ea_\tti_bin C:\Pragram Files\Common FilesiMicrosoft Sharedweb Se., —
P EaPrinters CWINNT \webiprinkers
Stop @My Tusic Cai Py Music
e I @eFuIFiII C:AWBMNET Trans|Chapter 104 IBuy AdventurelwnmRookief, ..
_— G4 TR v Arkernt retiieh 1 WRMET Trans)Chapter 10416y AdventurelwamwR oot B, .
m Virtual Directary rans\Chapter 104 IBUy AdventuralmemR ook 1By, .
All Tasks 4 [—— ransiChapter07iMorthwind MET\Morthwindweb
Wiew 3 Server Extensions Administrator gAsphietDh
T ————rrrogram Files|Microsaft Visual Studio .METVCrystal Rep..
Refresh @Datanppendix Ci\Datasppendix\aspProgRefData
Expart List. .. @WebUsageCS Cilsyskem.webiWeblsageCs
PropT @XMLUsageCS i Emlsppendix XMLUsageCs
[@systemWebServic o Cilsystem.web, services, protocolsisystemiWebServicesPr..
L Help ﬂ @IStockService C:'l,FTrackADONET'I,ChapterDIS'l,StockService r
KN I L) K »

|Create new virbual directory | |

Select New | Virtual Directory and the virtual directory wizard will commence. Assign the new directory
the alias web_viewer_basic and set the path to
C:\CrystalReports\Chapter04\web_viewer_basic. Make sure both read and write are enabled
and finish the wizard.

Either way you choose to do it, the development environment will open with a default form that we will be
using in the section. Throughout the chapter, we will be using only one or two Web Forms to demonstrate
different integration features, but the same concepts can be applied to your own web applications.

Before you go any further, we need to get some basic architecture decisions for your web application

out of the way, starting with a brief discussion of the object models available within Crystal
Reports.NET.

118

Report Integration for Web-Based Applications

Determining the Correct Object Model

When working with web applications, there are two different object models to choose from, each with
its own capabilities and strengths. The first, contained within the Crystal Reports Web Forms Viewer
object model (CrystalDecisions.web), contains all of the functionality required to view a report in
the Crystal Reports Web Forms Viewer, including the ability to set database logon information, pass
parameters and record selection, control the viewer's appearance, and view reports, including reports
consumed from an XML Report Web Service.

Using the CrystalDecisions.Web object model, you are covered for most basic report integration
requirements, but you have no control over the report itself at run time — you won't be able to change
the record selection for any subreports that appear in your report and you won't have access to modify
report elements, like groups and sorting, or formula fields.

For complete control over the report and its content, you need to use the Crystal Reports Engine object
model (CrystalDecisions.CrystalReports.Engine) in conjunction with the viewer object
model. This will allow you complete control over your report and the objects and features contained
within. Using the Crystal Reports Engine means that you have a rich object model that can be used to
modify even the tiniest elements of your report.

Note: You will also need to use the Report Engine object model if you are using ADO (NET or
"Classic" ADO) as the data source for your report (which is covered in Chapter 6: Working with
.NET Data).

It is important to note that the Crystal Reports Engine object model cannot stand alone - it provides no
way to view a report and relies on the Crystal Reports Web (or Windows) Forms Viewer to actually
view the report.

Crystal Decisions recommends that you do not overlap the two object models and try to use properties
and methods from both at the same time. An example would be where you are setting a parameter field
value in the Report Engine object model — you wouldn't want to also try to set a parameter field in the
same report using the Crystal Reports Windows Forms Viewer object model. Try to pick an object
model based on your requirements and (as I recommended in the last chapter with the Windows Forms
Viewer) stick with it!

Understanding the CrystalDecisions.Web Namespace

The CrystalDecisions.Web namespace contains all of the classes that relate to functions available
within the Web Forms Viewer itself. The following table illustrates the different classes that are
available, as well as their use in web applications.

Class Description

CrystalReportViewer Contains the properties, methods, and events relating to the
CrystalReportViewer and viewing reports. Note: some
properties of this class are inherited from
CrystalReportViewerBase.

Table continued on following page

119

Chapter 4

Class Description

CrystalReportViewerBase Contains properties for setting the target browser edition,
database logon information, etc.

DrillEventArgs Provides data for the Drill event on main reports and
subreports. Drill events fire when a user drills down into a
group or summary on a particular main report or subreport.

DrillSubreportEventArgs Provides data for the DrillDownSubreport event on main
reports and subreports. Drill events fire when a user drills
down into a group or summary on a particular main report
or subreport.

ExceptionEventArgs Provides data for the HandleException event.
HandleException events occur when there is an error or
exception when setting report properties or viewing the report.
Primarily used for troubleshooting and error messages.

NavigateEventArgs Provides data for the Navigate event. When a user navigates
through the pages of a report, the Navigate event fires each
time. This can be used to notify the users when they have
reached the last page, to call custom actions, etc.

SearchEventArgs Provides data for the Search event. The
CrystalReportViewer includes an integrated search
function to search for values within a report. The Search
event fires when a user searches for a value and could be used
to trigger a search of another report or other report
descriptions, etc.

ViewerEventArgs Provides data for the Viewer event. The Viewer event fires
when some action has occurred within the viewer itself and can
be used to launch other actions when the viewer loads, etc.

ZoomEventArgs Provides data for the ViewZoom event. The ViewZoom event
fires when the zoom is changed on the viewer and can be
used to suggest the best resolution for a particular report
(100%, 200%, etc.), or if you are showing two reports in
viewers side by side, to synchronize the zoom factor between
the two (so the magnification on both reports stays the same —
if you change one to 200%, the other view changes as well).

Using the Crystal Report Viewer for Web Forms

For report files that live externally to your application (for instance, as a standalone report file, created
with either this or a previous version of Crystal Reports) there is not much to creating a simple preview
form for your report. We are going to walk through that process in the following section.

120

Report Integration for Web-Based Applications

Earlier we created a new project called web_viewer_basic and within that project there should be a
default Web Form (WebForml . aspx) that was created when you created the project. To start, we need

to drag or draw the Crystal Report Viewer onto our Web Form:

3% web_viewer_basic - Microsoft Yisual Basic .NET [design] - WebForm1.aspx*

File Edit Wiew Project Buld Debug Data Format Table Insert Frames

@'T:I'E'F; nv

Tools Window Help
p Debug v | [Date

- B £

[BERZH 2

=10l x|

Start Page WebForml.aspx* |

Data |

‘Web Farms | - |

=5 Customalidator

ValidationSummary
¥l .. Use ReportSource or DataBindings property to specify a report
B Literal - .

CrystalReportyiewer
Components | hd
HTML
Clipboard Ring

CrystalReport¥iewer - CrystalReportviewesrl

General

| Ready | |

From that point, we need to set the ReportSource property to let the viewer know where to get the report
from. To access this property, locate the Properties window for the Crystal Report Viewer and open the
(DataBindings) property, by clicking on the ellipse at the side, to show the dialog that appears below:

CrystalReport¥iewerl DataBindings ﬂ

Select the property to bind. Then either use Simple binding to bind to & data item and set
Formatting or use Custorn binding ko type in a binding expression,

EBindable Properties:

Accesskey
BorderColar
Borderstyle

Einding For ReportSource

" simple binding:

Format: Sample:
| =

{* Custom binding expression:

"C:{CrystalReports/Chapter0d/web_viewer_basicfs d
ales_graph.rpt"
=

o]

Cancel | Help |

Click on the ReportSource property and click on the radio button to select Custom Binding
Expression. In this example, we are going to assume that you have unzipped the download files for this
chapter to your hard drive in a folder called CrystalReports\Chapter04 — included in these files is
a Sales Graph report (sales_graph.rpt) that we will be using through this walkthrough.

121

Chapter 4

Once you have entered the name and path for your report, click OK to accept your changes and return
to the form we were working with. The report will now be displayed in a "Preview" mode in the form

designer, as shown here:

2% web_viewer_basic - Microsoft ¥isual Basic .NET [design] - WebForm1.aspx* i] [
File Edit ‘Wew Project Buld Debug Data Format Table Insert Frames Tools window Help
@vhvﬁn r)v p Debug v | i Date 'FQ%E' »
D|a |EH.{ - -l ez ad 2
Skark Page WEhForml.aspx*| 40 X |8 arer
Sales Report A B E G|

R Solution 'web_viewar_basic' (1 pra:
B- ﬁ web_viewer_basic

(s3] References

[®] assemblyInFo.vh

@ Global asax

Ad] Styles.css

400

|58 web.config

330
w

wieb_viewer_basic, vsdisco

0o
w
Lelz)
m
1-1]
5200
B
Hsn
s

= nn

K|
(@ e J .|

L B

Ready || ||

| ~

If we were working with a Windows form, this would be all that is required to actually preview a report.
Since Web Forms work a little differently, there is an extra step involved before we can run our

application and preview our report.

Double-click anywhere on your form to open the code view for the form and locate the section of code
marked Web Form Designer generated code. Expand this section to find the Page_Init function and
add a line of code immediately after the InitializeComponent () call to bind your report to the

viewer when the page is initialized:

Private Sub Page_Init (ByVal sender As System.Object,

System.EventArgs) Handles MyBase.Init

ByVal e As

'"CODEGEN: This method call is required by the Web Form Designer

'Do not modify it using the code editor.
InitializeComponent ()
CrystalReportViewerl.DataBind ()

End Sub

Whenever you run your application and preview the form, your report will be displayed in the Crystal

Report Viewer, as shown next:

122

Report Integration for Web-Based Applications

/) WebForm1 - Microsoft Internet Explorer mEE|
Fil= Edit Wiew Favorites Tools Help ﬁ
dmBack - = - 7 ‘ Qsearch [GlFavorites GMeda ¢4 | Ea= M=]
Address IEj hikpe i flocalhostjweb_viewer_basicfwebForm1.aspx j 6>G0 |Links >
d by 2|
BUSA [roet+ lcd] [®l| #liwow = "Crys
B-France
B Ttaly
B-England
- Germary Sales Report
H-Swrtzetland
- Tatwan
B-Portugal
B Austria
#-Worway 2400K
20K,
&
[}
15k
s
180K
B
[}
@DK
£
F0K
Ok K -
usa France traly England Germany Switzerland Taiwan Portugal
Country -
4| | 3
E:l Done ’_l_’_ E Local intranet:

The viewer interacts with the Crystal Reports print engine, runs the report, and displays the results.
From your report preview, you can drill-down into the details or search for a value, without having to
do any additional coding.

If you only have one or two reports that you want to integrate into a view-only application and you don't
need to customize any features at run time, this may be all you need. But for applications that required a
more sophisticated integration with Crystal Reports.NET, you probably need to look a bit further.

In the following sections, we are going to walk through adding a report to your application, binding the
report to the Crystal Report Viewer, and customizing the viewer.

Adding a Report to Your Application

To add a new report to your application, you have two choices — you can either use an existing report
that you have created (using this or a previous version of Crystal Reports), or you can use the Report
Designer integrated within Visual Studio .NET to create a report from scratch. For our purposes, we are
going to add an existing report to our next sample application (for more information on creating reports
from scratch, check out Chapter 2: Getting Started with Crystal Reports.)

In this example, we will add the Sales Graph report to web_viewer_basic2. Whereas the approach in
our first example favors publication of a report that will always be found by the same path, but is
subject to regular updates, this option favors a report that is not likely to change and so can be
incorporated into the application, allowing us to alter its features, or even build it from the ground up.
This is also relevant to whether we are using strongly typed or untyped reports, as we discussed in the
last chapter.

123

Chapter 4

Once again, you have the choice of building the project or using the code provided - but remember that
if you use the code provided, you must create a virtual directory for it in IIS on your machine.

To add our Sales Graph report to this new project, select Project | Add Existing Iltem, which will open
the dialog shown below. Change the drop-down list to show All files and specify *.rpt for the file name
to filter the list to show only the available reports.

H
Look in: I[:l Chapterod j = .2 W N i » Toals »
_1oid
ﬁ] | web_viewer_basic
Hiskory | web_viewer_basic2

sales_graph.rpt

e

Z
ﬂ'ﬂ\
. Xz

| K

eyl

fad

frd

=]
il
i
&
[=}
b=

*

Favarites

=]
:_li File name: I*,rpt j Open |+
Iy Metwork

Places Files of type: I,q|| Files {*,*) j Cancel

Once you have selected the Sales_Graph.rpt report, click Open and this report will be added to your
project in the Solution Explorer.

2] @ | o
Q Salution 'web_viewer_basic2' (1 project)
B- lﬁ web_viewer_basicz
B i References

b 6D CrystalDecisions. CrystalRepotts.
+3 CrystalDecisions. ReportSource
+0 CrystalDecisions. Shared
+Z1 Syskem
2 Syskem,Data
) Syskem,Drawing
= System.Web

-+ Syskem. ML
----- P2 AssemblyInfo,vh
----- Global, asax
..... e
----- E Skyles.css
----- @ web,config
----- wieb_viewer_basic2 vsdisco
----- webForml,aspx

4| | 3
E Salution Explorer Properties |

124

Report Integration for Web-Based Applications

Once you have added your report to your project, it will appear in the Solutions Explorer and you can view
the design of the report using the Report Designer and access its properties through its Properties page.

Properties
sales_graph.rpt File Properties j
% [4][=]
Embedded Resource -
Custom Tool CrystalDecisions, v35hell. CodeGen. ReportCodeGeneratar
Custom Tool Mamespace
File Mame sales_araph.rpt
Full Path N\ CrystalR eparts\Chapter 04 web_viewer _basic?\sales_graph.rpt

@ Solution Explorer Properties |

Adding the Report Viewer to a Web Form

You can add the Crystal Report Viewer from the Web Forms Toolbox and drag or draw the viewer
onto your form — unlike the Crystal Report Viewer for Windows forms, the Web Forms Viewer does

not provide a view of how the viewer will appear on your page until you actually bind a report to it, at
design or run time.

In fact, we'll do this now for web_viewer_basic2. Just drag a CrystalReportViewer over from the
Toolbox and place it on the Web Form. Don't bother setting a report source for it yet, as we are about
to look at different methods for binding the report to the viewer.

The Crystal Report Viewer can be used on existing forms to display a report side by side with other
controls, or you could add the report to a new form to have a separate window for previewing reports.

Binding a Report to the Report Viewer

With the Report Viewer added to your form, we now need to bind a report to the viewer itself. As we
saw in Chapter 3 for Windows-based applications, there are five different ways to bind a report to the
Crystal Report Viewer:

By report name

By report object

By binding to an untyped report
By binding to strongly-typed report

0O 0 0O 0o O

By binding to strongly-typed cached report

Binding by Report Name

To bind a report using the report name, as we did in our first example, all you need to do is set the
ReportSource property, either through the Data Bindings properties for the report or through the
form's code, as shown here:

CrystalReportViewerl.ReportSource =
"C:\CrystalReports\Chapter04\web_viewer_basic\sales_graph.rpt"

125

Chapter 4

Then in the Page_Init event of your form, you would need to add a single line of code to call the
DataBind method immediately after the InitializeComponent () call, as shown here:

CrystalReportViewerl.DataBind ()

If you prefer to set the initial report source using the property pages, you will need to open the Properties
page for the report viewer, and then select the (DataBindings) property as we did in the first example.

But since we have added the report to our application, we could also bind the report by creating a
report object, loading the report into the object, and binding the object to the Crystal Report Viewer.

Binding by Report Object

Binding by a report object works slightly differently depending on if you have added the report to your
project, or if you are referencing it externally. For a report that resides external to your application, you
need to first specify an import of the CrystalDecisions.CrystalReports.Engine, which will
allow you to create the object.

If this is not already present, we shall add it. In the Solution Explorer, right-click on your project title
and select Properties from the right-click menu to open the dialog shown below.

web_viewer_basic Property Pages ll
Configuration;: IN.I’A j Flatfarm: IN.I'A j Configuration Manager. ., |
=5 Common Properties Namespace:

General
Build

g Imports Add Import I Update

Reference Path
Designer Defaults Project imports:

wieb Settings Micrasoft. VisualBasic -
(23 Configuration Properties Syskemn
System, Collections
Syskem, Configuration
Systern,Daka
Syskern, Drawing
Syskem. Web
Syskem, eb, LD
Syskem, Web, UL HEmlControls

Sy ke Wnb T Wb bl

Remove |

Kl

Qg | Cancel | Apply | Help |

Under the Common Properties folder, use the Imports option to add the

CrystalDecisions.CrystalReports.Engine namespace to your project and click OK to return to
your form.

With this namespace imported, we now need to create the report object as a ReportDocument in the
form's Declarations section, as shown:

Dim myReport as New ReportDocument ()

126

Report Integration for Web-Based Applications

With our object now ready to be used, we can now load the external report file by placing the following
code under the Page_Init event:

InitializeComponent ()
myReport.Load ("C:\CrystalReports\Chapter04\sales_graph.rpt")
CrystalReportViewerl.ReportSource = myReport

If the report you are using has actually been added to your project (as ours was above), a class was
automatically generated for the report, so we could use the class instead to bind the report to the viewer
(while the import and Public declaration remain the same):

InitializeComponent ()
myReport = New sales_graph()
CrystalReportViewerl.ReportSource = myReport

or, if you wanted to eliminate the myReport variable:
CrystalReportViewerl.ReportSource = New sales_graph()

Which method you choose will depend on where the report is physically located and how you wish to
access it.

Binding to an Untyped Report

When working with Crystal Reports.NET, you can add individual report files to your project and use
and reference them to view reports from your application. Taking this a step further, you could also use
these reports as components, which is where we start looking at typing.

When integrating reports into an application, we can either use strongly-typed reports or untyped
reports. If you have been working with Visual Studio .NET for any length of time, you have probably
heard of strongly-typed objects. A strongly-typed object is predefined with a number of attributes that
are specific to that object, giving programmers more structure and a rigorous set of rules to follow,
whereas an untyped report does not have this structure or rules applied to it, making it more difficult to
work with.

Within the frame of reference of Crystal Reports.NET, a strongly-typed report can be any report that

has been added to your project. When you add a report to a project, you will notice that in addition to
the report, another file (with a . vb extension) is also added, as shown overleaf:

127

Chapter 4

@ Solution 'web_viewer_basic2' (1 project)

= ﬁ web_viewer_basic2

F- [5] References

B ._ibin

----- AssemblyInfo.vb

&~ &) Global.asax

= sales_graph.rpt
_graph.wb

----- A styles.css

----- @ Weh, config

[web_viewer_basicZ,aspx

----- web_viewer_basicZ, vsdisco

@ Solukion Explorer Properties |

Note: This file is hidden until you select Show All Files from the Solution Explorer.

This additional file is the report source file and contains a report class specific to each report, called
ReportDocument, which is derived from the ReportClass class and is created automatically for you.

An example of an untyped report would be a report that is stored externally to your project. For
instance, you could view a report by setting an external reference (as in our first example, where we set
the ReportSource property in the (DataBindings) to
"C:\CrystalReports\Chapter04\web_viewer_basic\sales_graph.rpt".

We'll just have a brief look at how we do this. Create a virtual directory called web_viewer_untyped
pointing at C:\CrystalReports\Chapter04\web_viewer_untyped (if this is where you have
downloaded the source code to) or alternatively build it from scratch.

To add a report component to your application, switch to the Layout view of your form and look in the
toolbox under Components. In this section, you should see a component labeled ReportDocument.
Drag this component onto your form, which will open the dialog shown below:

=]

Choose a typed RBeportDocument class from pour project, or the
default untyped ReportD acument class.

Marme: Untpped FeportDocurment

If ho typed ReportDocument exists in paur praject, wou
can create one by adding or opening a Crystal Report

b pour project,
]9 I Cancel |

It is using this dialog that we set whether our ReportDocument component is typed or untyped. If you
select Untyped ReportDocument, then we are not really accomplishing much new here. Drag a new
CrystalReportViewer onto the Web Form, and then load a report into ReportDocumentl and bind
the component to the viewer.

128

Report Integration for Web-Based Applications

InitializeComponent ()

Dim ReportDocumentl As New ReportDocument ()

ReportDocumentl.Load ("C:\CrystalReports\Chapter04\sales_graph.rpt")
CrystalReportViewerl.ReportSource = ReportDocumentl

Binding to a Strongly-Typed Report

Finally, you can choose to add a strongly-typed report component, which probably has the simplest
binding method of all. First of all, add the report that you wish to bind to your project. In our case, this
will be sales_graph.rpt. To create a strongly-typed ReportDocument component, drag the
ReportDocument component onto your Web Form. (The code for this Web Form is available in the
code download for the chapter as web_viewer_stronglytyped.)

=]

Chooze a twped ReportDocument class from your praject, or the
default untyped FepartDocument class.

Warme: web_viewer_stronglptyped. sales_graph j

If no twped ReportDiocument existz in your project, you
can create one by adding or opening a Crystal Report
b wour project.

[T Generate cached stongly-typed repart

)4 I Cancel

You will then see the same dialog before, with a drop-down list of all of the available reports that are in
your project. Select an existing report to create a strongly-typed ReportDocument. Now, insert the
CrystalDecisions.CrystalReports.Engine namespace into the project using the Properties
page as we did previously, drag on a CrystalReportViewer, and we're set. From that point, we just
need to set the ReportSource property in the Page_Init event once more:

CrystalReportViewerl.ReportSource = sales_graphl

(Where sales_graphl is the name automatically assigned to the ReportDocument component when
you added it to your form.)

Binding to a Strongly-Typed Cached Report

Another option for strongly-typed reports is the ability to use ASP.NET caching with your report. When
you added your report to your application, you may have noticed that there was a checkbox for
Generate cached strongly-typed report. Report caching is based on the underlying ASP.NET caching
model and provides an easy way to improve your application's performance.

When a report is cached, the subsequent Web Form that is used to view the report will load faster when

accessed by different users. To add a report to your Web Form as a cached report, select this option as
you add a strongly-typed report to your application from the dialog shown overleaf:

129

Chapter 4

—mix

Choose a typed ReportDocument clags from pour project, or the
default untyped ReportDocument class.

If no typed ReportDocument exists in pour project, wou
can create one by adding or opening a Crystal Report
to pour project.

[V Generate cached strangly-typed report

Ok I Cancel

You will see that your report file will be inserted as cached_sales_graphl and an additional object
will be inserted into the Web Form's source file.

You could then bind to this particular cached report just as you would to any other strongly-typed
report, but with a different name:

CrystalReportViewerl.ReportSource = cached_sales_graphl

When multiple users visit the same report, they will actually be looking at a cached copy and not hitting the
database in real time. (To ensure this is true, the viewer by default does not have a refresh button showing.)

So regardless of which method you choose to bind your report to the viewer, the result is the same. For
ease of use and functionality provided, the easiest method is going to be to stick with strongly-typed
reports, because in the long run the structure and coding standards will mean you can create reporting
applications quickly, in a consistent manner.

After binding, you can run your application and when the form is loaded the Crystal Report Viewer will
run the report you have set in the ReportSource property and display a preview of it. But before we can
move on to customizing the viewer, we need to look at working with secured databases.

Note: Before we finish up with viewer basics and binding, keep in mind that reports that were created
from a secure data source may require a user name and password. Turn back to Chapter 3 to the section
titled " Passing Database Logon Info" to review the use of the LogonInfo collection - it behaves in the
same way for either the web or Windows form viewers and the same goes for the record selection
formula - it can be returned or set using the SelectionFormula property, and its use is also described
in Chapter 3.

Customizing the Appearance and Layout of the
Report Viewer

The CrystalReportViewer class contains all of the properties, methods, and events that relate to the
viewer itself; its appearance, methods that are used to make the viewer perform certain actions (such as
refresh or go to the next page), and events that can be used to determine when a particular event (such
as drill-down or refresh) has occurred. To start learning how to work with the viewer, we are going to
start with the basic properties and move on from there.

130

Report Integration for Web-Based Applications

To get started, we need to create a new project to work in — from within Visual Studio, select File | New
| Project and from Visual Basic Applications, select ASP.NET Web Application and specify a name and
location for your project files.

New Project

Project Types: Templates:

£ Visual Basic Projects
{2 visual C# Projects E
{0 visual C++ Projects Wwindows Class Library Windows

{11 Setup and Deployment Prajects application Control Library
23 other Projects

{1 visual Studio Salutions @ Iﬁ
Vg g

A5P.NET Web ASP.NET Web Web Control
Application Service Library
vI

x|

A project for creating an application with a wWeb user interface

Mame: | web_viewer_properties

Location: tkp:fflocalhost web wer properties Browse... |

Project will be created at http:/flocalhostfweb_viewer _properties.

FMore | (o4 I Cancel | Help |

In the sample files, we have called this project (web_viewer_properties). Once you have selected a
name for your project and clicked OK, the development environment will open with a default form that
we will be using in the section. Alternatively, you can create a virtual directory for this project using the
sample code provided.

We also need to add a report to work with in this section, so select Project | Add Existing Item and
select product_listing_bytype.rpt. Add this to your project, insert the
CrystalDecisions.CrystalReports.Engine namespace, drag across a ReportDocument and
place this on the form (selecting product_listing bytype.rpt out of the options on the dialog
box), and then insert the CrystalReportViewer and set the binding to this report in the
Page_Init event:

CrystalReportViewerl.ReportSource = product_listing bytypel
You are now ready to get started!
When you were working through the earlier example, binding to a viewer and previewing your report,
you may have noticed that there is a standard set of icons and layout that appears by default on the

CrystalReportViewer. You can control most of the aspects of the viewer and toolbar by setting a few
simple properties, as shown overleaf.

131

Chapter 4

The area at the top of the viewer is the toolbar, which can be shown or hidden as an entire object or
you can choose to only show certain icons. On the left-hand side is a Group Tree, generated by the
grouping that you have inserted into your report. The properties that control these general properties

I CrystalReportYiewerl CrystaIDecisinns.Web.CrystalRe;j

5

[£][=]

(DataBindings)

CrystalReportViewer1

Bccesskey
BestFitPage
BorderColor
BorderStyle
Borderwidth
ClienkTarget
DisplayGroupTree
DisplayPage
DisplayToolbar
Drrilldawn T ar get
EnableDrllDown
HasDrillUpButton
HasGotoPageButton
HasPagehavigationButkons
HasRefreshButtan
HasSearchButton
HasZoomFackarLisk
Height
HyperlinkTarget
PageToTresRatio
PageZoomFactor
SelectionFarmula
SeparatePages
TabIndex

ToolTip

Wisible

Width

True

]

MatSet

Auta
True
True
True
_self
True
True
True
True
False
True
True
S0px
_self
3

100

True
1]

True
350px

are Boolean and are listed below:

Property Description

BestFitPage For showing the report as-is or with scroll-bars
DisplayGroupTree For showing the group tree on the left-hand side of the viewer
DisplayPage For showing the page view

DisplayToolbar For showing the entire toolbar at the top of the viewer
SeperatePages For displaying a report in separate pages or one long page

132

Report Integration for Web-Based Applications

All of these properties default to True and you cannot change the position of any of these elements —
they are fixed in place on the viewer. You can, however, hide all of these icons and create your own
buttons for printing, page navigation, and so on.

For the icons within the toolbar, you can also set simple Boolean properties to show or hide a particular
icon, as shown below:

HasDrillUpButton

HasGotoPageButton

HasLevelUpButton

HasPageNavigationButtons

HasRefreshButton

HasSearchButton

0O 0 U0 oUu 0o

HasZoomFactorList
So a typical use of these properties is where you want to give users a preview of the report with the

ability to refresh the data shown. You could easily set a few properties before you set your
ReportSource property to make this happen:

CrystalReportViewerl.HasRefreshButton = true

When the report is previewed, it will appear as shown:

<2 WebForm1 - Microsoft Internet Explorer I =] 3]
File Edit “ew Favorites Tools Help ﬁ
q=pack ~ =~ G ot | Qzearch [GFavorites GMedia £ | S = 2
Address |@ http: fflocalhostfweb_viewer_propertieswWebForm,aspx j @Go | Links **

-

ees il & 'IU Bloow 5] “Crystal oo

Product Listing by Product Type | Page 10f5 |
|Produd Marne Color Size Price Product Class
Competition - -—- *}‘

The Competition Series is Htreme's line designed for serious mountain riders who like to
test the limits of mountain bike strength, versatility and responsiveness. If this souncs
familiar, then we've spent time developing, designing and testing these bikes just for you.
Mary of these bikes are being uzed by top riders in the World Racing series, in addition
to our ovwen team of elte racers. Whatesser you desire in g performance mourtzin bike, we
can deliver with one our Competition bikes.

s

i
%

Endorphin deep burguncy 185 £899.85 Bicycle -
K| | E
[&] [[| &2 Localintranet v

133

Chapter 4

In addition to simple Boolean properties, there are also a couple of other properties that can be set to
control the appearance and behavior of the viewer, including:

Property Description

PageToTreeRatio For setting the ratio between the group tree and the rest of the page -
larger numbers mean a larger report page, with a smaller group tree

PageZoomFactor The initial zoom factor for the report when viewed

So if we wanted to change the PageToTreeRatio and zoom factor so that the report was presented a
little bit better on the page, we could add the following code to be evaluated when the page was loaded:

CrystalReportViewerl.PageToTreeRatio = 7
CrystalReportViewerl.PageZoomFactor = 80

Our previewed Web Form would look like this:

<@ WebViewerProperties - Microsoft Internet Explorer =lox]
File Edit View Favorites Tools Help ﬁ

GmBack - = - G} bl | iQhsearch (G| Favarites FMedia ®| S = 2
Address I@j http:fflocalhostfweb_viewer_propertieswebForm1,aspx j @Go | Links **
-

tors el [El2| # e =] "Crystal <ge

[Product Listing by Product Type | Page 1 0f5
|H'“““""'" Cakor She Price Prodectc ase
“Saddles r=ya——T—
Competition
The Competiton Se ks b Xreme's e des gued or serkons monriah ride rs who (ke ©
Eatthe Im s otmoneiah bke stre gt ersatiiy and respors beress. Mk zonds
i, the b we'de spe pttme deeloping, des g1 1ng 3nd Eoteg tese bles Ethron.
Manyortiese bbes are be g wged byiop riders v e Word Rachg serks, v addiion
Toarown Bam ote e @o2rs. Wik ron des e I 3 penbmasc: motiil bl we
3k [er with ke onr Compettion bkes.
ER0pi Il Rep LA Iy 185 TR T
Descenl Feelath 15 25385 [:L=F=0
Exdomih deepbang iy o mmEE ook
Exdomih ceepbarg iy 17 mmE Ebck
Eniomin epbign; 15 meE ook
Mozzk lewee [qree 2 IR Bock hd
4 | 3
|2j Done E Lacal inkranet 4

Viewer Methods

When working with the CrystalReportViewer, we have a number of methods available to us, which
will allow us to integrate specific viewer functions into our application. As we move through this
section, keep in mind that these methods can be used to create your own "look and feel" for the report
preview window.

134

Report Integration for Web-Based Applications

Create a new Web Form, which we'll call web_viewer_methods. Again, the code for this application is
included with the download code. Drag a CrystalReportViewer onto this form. Include the report
product_listing bytype.rpt in your project (in the download code, the path is
CrystalReports/Chapter04/product_listing bytype.rpt). Drag a ReportDocument
component from the Toolbox onto your form, and when the dialog box opens up, select
web_viewer_methods.product_listing_bytype from the drop-down box. Click OK.

Now we add some code to tie our report to the application. In the Page_Init event in the designer
generated code, once again add:

CrystalReportViewerl.DataBind ()
Now all that remains is to set the ReportSource property in the Page_Load sub:
CrystalReportViewerl.ReportSource = product_listing bytypel

Compile and run this. Now, we're all set to customize our viewer.

In this example, we are actually going to walk through building a custom viewer. The first thing we
need to do is set the DisplayToolbar property and the DisplayGroupTree property to False in the
Properties pane for the viewer, and add some additional buttons and textboxes to our Web Form using
the screen shot earlier as a guide, which we will walk through below.

As we walk through this example, we are going to add the code behind these buttons and this form using
the methods described below and learn how to match the viewer user interface to your own application.

Setting Browser Rendering

The CrystalReportViewerBase class provides a number of key properties, one of which is the
ClientTarget. The ClientTarget property is a string and determines how the Crystal Report
Viewer will render the report.

These strings are:

Q ied - for Internet Explorer 4.0

Q ie5 - for Internet Explorer 5.0

O uplevel - for most other web browsers
Q downlevel - for very basic web browsers

A web browser is considered uplevel if it can support the following minimum requirements:

ECMAScript (JScript, JavaScript) version 1.2.
HTML version 4.0

The Microsoft Document Object Model (MSDOM)
Cascading style sheets (CSS)

0O 0 o O

135

Chapter 4

Browsers that fall into the downlevel category include those browsers that only provide support for
HTML version 3.2.

So, to set the browser version you are targeting, you could set the ClientTarget property for your
form like this, under the Page_Load subroutine:

CrystalReportViewerl.ClientTarget = "ied"

There is also an Auto value, which is the default setting and automatically selects the best rendering
option based on the browser type. Unless you are writing an application for a specific browser or
compatibility level, leaving this property set to Auto will provide the best viewing experience for the
browser you are using.

For more information on detecting the browser type your web application is using, see
the topic ""Detecting Browser Types in Web Forms'' in the Visual Studio .NET
combined help collection.

Refreshing the Data in a Report

When a report is refreshed, it goes back to the database for the most current set of data available and
runs the report again. On our custom web viewer, you should have a Refresh button, so pull a Button
control onto the Web Form and rename it Refresh_Button in the ID property in the Properties pane.
Change the text property to Refresh.

Now, click on the Refresh_Button on your form to open the code for it. We can add some code
behind this button to refresh the report using the RefreshReport method as shown below:

Private Sub Refresh_Button_Click(ByVal sender As System.Object, ByVal e
As System.EventArgs) Handles Refresh_Button.Click
CrystalReportViewerl.RefreshReport ()
End Sub

Compile and run the application. The button should now be present on your form. Click on it. This will
cause the report to return to the database and read the records again. Use this functionality with caution
— if a report has a large SQL query to perform before it can return the first page, you may experience
performance problems.

Page Navigation and Zoom

Now we are going to insert some buttons across the top of our Web Form in the same way we did with
the Refresh button, with the following names and text values:

Button Name (ID Property Value) Text Property Value
FirstPage_Button First
Back_Button Back
Forward_Button Forward
LastPage_Button Last

136

Report Integration for Web-Based Applications

We access these properties, once again, through the Properties pane in Visual Studio .NET.

For page navigation using the buttons we have drawn on our custom form, we have a number of
methods that can be called without any additional parameters, as shown below:
ShowFirstPage

ShowPreviousPage

ShowNextPage

0O 0 0O 0O

ShowLastPage
These methods do not return a result, and unlike the Windows Forms Viewer, the Web Form Viewer
does not have a GetCurrentPageNumber method, which would have returned an integer representing

the page you are currently viewing.

To add these methods to the page navigation buttons, double-click the appropriate buttons on your
Web Form and enter the code behind, as shown:

CrystalReportViewerl.ShowNextPage ()

Do this for the other three buttons, including the appropriate method for each. Compile the project and
test these buttons.

In addition to page navigation, you also have the ability to choose the zoom factor that is applied to
your report. By default, the zoom is set to 100% of the report size unless you specify otherwise.

In our custom viewer, you should have a drop-down list for the zoom factor. To create our own zoom
factor functionality, drag a drop-down list onto the form. Open the properties for your drop-down list

(in our example, we have named the drop-down list ZoomList).

In the properties for your drop-down list, locate and open the Items property, which should open the
dialog shown here:

ListItem Collection Editor

Members: Zoom Factor Properties:
+ | B Misc
Selected True
+ | Texk Zoom Factor
Yalue 100

&dd Remaove |

0K I Cancel Help

137

Chapter 4

Using this dialog, we are going to create the items that will appear in our drop-down list and specify the
corresponding values that will be passed to the form when an item is selected. Use the Add button to
add items and make sure that the values correspond to the text you have entered (for instance, Full Size
=100, 50% = 50, and so on).

Once you have entered all of the values, click OK to accept these changes and return to your form's
design. To use the Zoom method, double-click your drop-down box and add the following code:

CrystalReportViewerl.Zoom (DropDownListl.SelectedItem.Value)

This is simply calling the Zoom method using the item the user selects from your drop-down box. When
you run your application and preview your custom viewer, you should be able to select your own zoom
factor, and have it appear in the browser by pressing the Refresh button, as shown here:

& WebForm1 - Microsoft Internet Explorer _ (o] %]

File Edt “ew Favorites Tools Help |

GBack ~ = - (D ﬁ| Qisearch GalFavorites GfMedia ®| E-S =5 E D
Address I@_‘] httpefflocalhost jweb_viewsr_methods/webForm1, aspx j @Go |L\nks »*
Refresh | First Page | Elackl Forward | Last Page | ISD% 'l
[Product Listing by Product Tvpe Page 1a15

I
1
T

3
]
L

PHTEII

=
—
[y
oy
o i

¥ of

| »
|&] pone ’7 ’7 ’7 E Local intranet 4

Searching within a Report
Another powerful navigation feature can be found in the SearchForText method within Crystal

Reports.NET, which will allow you to search for a specific string that appears in your report.

On our custom viewer, we are going to create a textbox and a button labeled Search. We are going to
use this textbox to enter some search string and when the user clicks the Search button, we are going to
use the SearchForText method to find the search string within our report.

To start, we will call our textbox TextBox_SearchString and our Search button Search_Button.
Add these to the design view of our Web Form, remembering to replace the Text property for the

button with Search.

To use the SearchForText method, double-click the Search button and add the following code behind:

138

Report Integration for Web-Based Applications

Private Sub Search_Button Click(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles Search_Button.Click
If TextBox_SearchString.Text <> "" Then
CrystalReportViewerl.SearchForText (TextBox_SearchString.Text,
CrystalDecisions. [Shared] .SearchDirection.Forward)
End If
TextBox_SearchString.Text = " "
End Sub

The Crystal Report Viewer will search the entire report and when the value is found, go directly to the
page on which it appears (the last line of code above is just to clear the textbox for the next search) This
method can be called repeatedly to find all of the occurrences of a particular string — each time it finds
the string in your report (in our example below, we searched for Youth Helmet), it will jump to that
page, as shown below:

2 WebForm1 - Microsoft Internet Explorer _ (Ol x|
File Edit Wiew Favorites Tools Help ﬁ

$Back + = - (@ 7t | Qhsearch [FFavortes GfMedia &3 | Ey-S = []

Address I@ http:fflocalhostfweb_viewer_methodswebForm1, asp:x j @Go | Links **

Protect your head with one of Xtreme's helmets. Choose from either Xtreme's own line of
adult and youth helmets or from our Triumph "racing” series. Al our helmets are fully
approved by National Stanciards and are available in 2 variety of sizes and colors to suit

your fancy.

Hireme Soult Helmet wehite smimed £33.90 ACoessary

Triumph “ertigo Helmet black m £53.90 Accessary

Hireme Youth Helmet black £33.90 Accessary

Hireme Acdult Helmet red mediryg £3300 Accessory

Hireme Adult Helmet dreen medirg £33.80 Accessory

Hireme Adult Helmet wehite: medirg £33.80 Accessory

Hireme Adult Helmet dreen smimed £33.80 Accessory

Hireme Youth Helmet red £33.80 Accessory

Triumph “ertigo Helmet wehite: Irg £53.90 Accessory =

J T . e ;
|&] Done ’_ E Local intranet 4

You may have noticed that this method is slightly different between the Windows and
web viewers for Crystal Reports: with both types of Forms Viewer, you can pass the
additional parameter of Search Direction for searching forwards or backwards
through your report. However, in addition, this method in Windows will highlight the
found value. The web version does not have this capability.

Printing Your Report

Now, if you have already done some report integration with Windows applications, you may have
noticed that the Web Forms Viewer is missing one very important icon — the Print button. When a
Crystal Report is viewed on the web, it is actually rendered in static HTML 3.2 or HTML 4.0, with all
of the report elements represented in HTML code and syntax.

139

Chapter 4

This makes things difficult when it comes time to print your report — in a case where you were just using
the plain old viewer with little or no modification, imagine if you were to click on the print button from
your browser to print your report. Here is a preview of what your printed report would look like:

=

i | &+ « paeli o2 2 ® |G @ [7E% =] | bslp | Dioss

WebForml Page 10f2

Refresh | FistPage | Bad Foward | | LastPage | [Zoom Fasctor=

[Product Listing by Product Type

[FrodutMama olor

Competition

The Coma elliln Serles Is X veme's Ihe d eslgred for serlous moun n rkiers whe ke ko
1 e limlks ofmounianbiks sirera b, uersall b and e sponelueness . K bl sounds
iz, hen ve e penl Ine deusloping deslgning 3 E<ing hese blkes hisl or you
Mary o hese bikes are beng used by by rilers in he Werkl Radng series In adlion
bour our, kam ofelll rars | Uk uer you AEsIr In apertom ance munisin blke, we
ar, eRuE T e o G om pERler bke 2

erp nwguray
siee san
deep bugurdy
aeep nwgway
deep bugundy
el green
Evelueen
Eveigreen

It is not very pretty to say the least — if your application uses single-page reports or discrete parts of a
report, you may be happy with this, but for the rest of us, there has to be a better solution. So in answer
to this limitation in HTML and the way reports are presented in a browser window, we have to come up
with some creative solutions to actually print our report to a printer.

The following sections detail the different ways a report can be printed from the Web, as well as some
of the advantages and drawbacks of each method. Since we are looking at new functionality within
Crystal Reports.NET, we are going to create a new project specifically for this section.

From within Visual Studio, select File | New | Project and from Visual Basic Applications, select
ASP.NET Web Application and call this new application web_viewer_print. This application is
included with the download code. To use the downloaded version a virtual directory should again be
created for it in its downloaded location.

New Projeck x|
Iee ::::l
Project Types: Templates: BE ol
23] isual Basic Projects
{1 visual C# Projects E Elﬁ
{0 Visual G+ Prajects Windows Class Library Windows

{1 Setup and Deplayment Projects Application Contral Library
{1 Other Projects

L Wisual Studio Solutions ﬁ ﬁ
o)]

ASP.MET Web ASP.MET Web Web Control
Application Service Library
-

A project For creating an application with & Web user interface

Marmne: I web_viewer_prink

Location: ikEp: flocalhos

Browse. .. |
Project will be created at http:fflocalhostfweb_viewer_print,
FMore | oK I Cancel | Help |

140

Report Integration for Web-Based Applications

Once you have clicked OK, the development environment will open with the default form that we will
be using in the section.

We also need to add a report to work with in this section, so select Project | Add Existing Iltem. Change
the drop-down list to show All Files and specify * . rpt for the file name to filter the list to show only
the available reports. The web_printing_report.rpt file is in the code download path
CrystalReports\Chapter04\web_printing_report.rpt.

Once you have selected the web_printing_report.rpt report, click Open and this report will be
added to your project in the Solution Explorer — we will be looking at the different methods for printing
this report in the following sections.

Now, simply drag a ReportDocument component onto the form, which should offer you
web_viewer_printing.web_printing_report as first choice in the drop-down box. Select it and
drag a CrystalReportViewer onto the Web Form. Now, to bind the ReportDocument component to
the viewer, merely enter the following code in the Web Form's Page_Init event, as we have done
more than once in this chapter:

CrystalReportViewerl.ReportSource = New web_printing report ()

Compile and run the application to check that everything is working. We are now ready to start looking
at printing this report.

Printing from the Browser

The simplest method for printing a report is to print directly from the browser. You have already seen
how well this works, but there are some tricks that we can use to improve the way the report prints if we
are forced to use this method.

First of all, you can disable the DisplayGroupTree property if the report is likely to be printed. Do this
by setting it to False in the Properties window, or you could do this programmatically by inserting the
following code into the Page_Load event:

CrystalReportViewerl.DisplayGroupTree = False

The viewer object model provides a property called SeperatePages that by default is set to True,
meaning that the report is chunked up into individual HTML pages based on the report pagination.

When this property is set to False, the report itself becomes one long page, which can then be printed
just like any other web page. You can set this property through the property page of the Crystal Report
Viewer, as shown here:

£

IErystaIReport‘r‘iewerl CrystaIDecisions.Web.CrystalReportViewerj

= [4i][=]

SelectionFormula -
SeparateFages j
TabInde:x a

ToolTip

Visible True I
Wirdth 350Nk i

141

Chapter 4

or you can also set this option programmatically:
CrystalReportViewerl.SeparatePages = False

Another trick is to actually turn off the toolbar and all of the icons so that the output on the page is close
to what you would like to see when the report is printed.

CrystalReportViewerl.DisplayToolbar = False

So with the toolbar turned off and our report showing as one long page, you can then print your report
and have a somewhat-decent output as shown here in a preview from Internet Explorer:

| "= F'Qgeh— of 27 = W |@ @I?E% Y” Help | Close

Page 1 of 1

Product Sales

Product by Sales

130k

[0

Surr of gerda-dad

ALK

4 [- | § [T
Uz=oek oz Endcmhr Akl -ood Homeo -ap3d Hiomos alhede b Hotes Moo
F-zdaet Hams Hicres

0509/2002

Order Date Quantity Product Hame Produdt Class
Descert 1891500

30-Jan-1993 3 Descent Bicycle
1-Feb-1008 2 Descent Bicycle
20-hiay- 1007 3 Descent Bicwcle
26-Feb-1996 2 Descent Bigyce
29-4an-1993 1 Descent Bicycle
12-Sep- 1007 3 Descent Bioyde
30-Jan-1992 3 Descant Bicycle
31-an-1998 3 Descent Bicyde
1fi- 2nr-1993 1 Decrant Rirmirda

The only problem is that this method does not take advantage of any of the neat formatting features for
page headers and footers, as the browser just thinks this is one big page to be printed. In addition, the
column headings are only printed on the first page, so it is difficult to read the report as you move
through the pages.

Note: This method is only recommended for reports with a small number of pages (1-
20) as the entire report is concatenated into one long page, which may take a while to
render on screen or print.

142

Report Integration for Web-Based Applications

However, with that said, printing from the browser is the easiest method of printing your report from
the web, even with its limitations. For report developers who have put a lot of time and effort into their
report design and want that report to be seen and printed by the users (and look good!) we need to look
at another solution.

Printing from the Adobe Acrobat Plug-in

Crystal Reports.NET supports many export formats, and one of the more popular ones is Adobe's
Portable Document Format or PDF. Using the export functionality within Crystal Reports. NET and a
copy of Adobe Acrobat Reader (or the plug-in) installed on the client machine, reports can be printed
from the web.

This is one of the methods recommended by Crystal Decisions for printing your reports in a
presentation-quality format, and it actually developed the workaround used in this section to help
developers who were used to the way Crystal Reports normally operates and were frustrated by not
having that print button.

The first thing we need to do is create a new Web form that will contain our instructions. We will call
this form AcrobatPrinter.aspx, and create it by right-clicking on the project name, and selecting
Add | Add New ltem. We will then select Web Form and name it as above. Right-click on it and select
Set as Start Page.

Draw or drag a button onto the Web form and call it PDF_Button, and label it Export via PDF.

Now we need to do some setup to utilize the Crystal Reports Engine (covered in Chapter 8) and set
some options available from the CrystalDecisions. Shared namespace.

So, we are going to put some code behind our export button to dimension variables for the export
options that we want to use, and also for the specific options for exporting to a disk file. Click on the
button in the designer, and insert the following code:

Private Sub PDF_Button_Click(ByVal sender As System.Object, ByVal e As _
System.EventArgs) Handles PDF_Button.Click
Dim myExportOptions As CrystalDecisions.Shared.ExportOptions
Dim myDiskFileDestinationOptions As _
CrystalDecisions.Shared.DiskFileDestinationOptions

Next, we are going to create a variable to hold the name of the file that we are going to be exporting to,
as well as creating a new instance of a Sales Report that has already been added both to the project and
to this form, through the ReportDocument component.

Dim myExportFile As String
Dim myReport As New web_printing report ()

143

Chapter 4

For our next order of business, we need to set a temporary location for the output file — this can be
anywhere on your server — and we are going to build a unique file name using the session ID from the
ASP.NET session and tacking the PDF extension on the end, so the file association will work correctly
when we go to view this file in our browser.

myExportFile = "C:\CrystalReports\Chapter04\PDF " & _
Session.SessionID.ToString & ".pdf"

Now, for the meat of the matter — actually setting the destination options to export your report to a PDF
file and write it to the disk.

myDiskFileDestinationOptions = New
CrystalDecisions.Shared.DiskFileDestinationOptions ()
myDiskFileDestinationOptions.DiskFileName = myExportFile
myExportOptions = myReport.ExportOptions
With myExportOptions
.DestinationOptions = myDiskFileDestinationOptions

.ExportDestinationType = .ExportDestinationType.DiskFile
.ExportFormatType = .ExportFormatType.PortableDocFormat
End With

Then, we call the Export method to export our report:
myReport .Export ()

But we are not done yet! We need to take the exported PDF file that has been generated and output it to
the browser so the user can view it using the Acrobat Plug-In or standalone viewer. To do that, we are
going to use some simple response statements to return the file to the browser:

Response.ClearContent ()
Response.ClearHeaders ()
Response.ContentType = "application/pdf"
Response.WriteFile (myExportFile)
Response.Flush ()

Response.Close()

Finally, once we have delivered the file to the user, we need to clean up after ourselves and remove the
file from the server altogether.

System.IO.File.Delete (myExportFile)
End Sub

So when all of this code is put together behind our export button and our application is run, the user
can click the button and preview and print the report from Adobe Acrobat, with the page numbering
and other features in place, as shown here:

144

Report Integration for Web-Based Applications

/3 http:/ /localhost/web_viewer_print/AcrobatPrinter.aspx - Microsoft Internet Explol =] |
File Edit V“iew Favorites Tools Help i
dmBack - = - () 2t | Qhsearch [GlFavorites fMedia &4 | B-S5d®
Address I@_‘] http:fflocalhostjweb_viewer_print/acrobatPrinter, aspx j @Go |Links >
B&|[n - gROBE]K « » e 3 |[O& T8 A
| @ oz~ @|D@|Q§'
|2
N
£ Product Sales
£
]
@ Product by Sales
7
@ 000K
E
2 bk W Decoart
=] W e
= a [Endorphin
Ly 5 ook I SlekFack
3 s
2 & e
= B sl
Ao Emmm"rfl';;s
ok
Desean herzzier Endorphin SlickRock Romen Feapsl v Wiheakr bl Hicics b
Product Mame hius
05/09/200:
Order Date Quantity Product Name Broduct Clage Lnit Price gxlended
[Descent $1891500
a0 L ET-1-1:1 a = [T D LTV,] anan hd
W) 4 4] 10f32 ¥ M GExiin O]9 = 4] ’
|ﬁj Done l_l_,_ E Local intranet A

Printing from other Export Formats

In addition to Adobe Acrobat format, you can also print to other supported export formats such as
Excel, Word, or others, by changing the file extension, the MIME type, and the ExportFormatType
property in the code above. There are a number of different destinations that are supported, including:

Name Description MIME Type

Excel To export to a Microsoft Excel file application/vnd.ms-xls

HTML32 To export to an HTML file application/html
compatible with HTML v3.2

HTML40 To export to an HTML file application/html
compatible with HTML v4.0

PortableDocFormat To export to PDF (Acrobat) format application/pdf

RichText To export to an RTT file for use application/rtf
with Microsoft Word,
WordPerfect, and so on

WordForWindows To export to a Microsoft Word file application/msword

145

Chapter 4

If you want to export to Word, the RTF export actually provides a better export format. To open the
RTF on the client side using Word (instead of the application associated with the RTF file extension),
leave the ExportFormatType property set to RichText but change the MIME type to be
application/msword.

Using Viewer Events

Viewer events provide the ability to track when different events are fired from the browser — for
instance, when the user navigates through the pages of the report or when they refresh the report. These
events can then be used to fire other code within your application.

While all of the different events have their own unique properties and methods, they all inherit a
common property called Handled that is a Boolean value used to determine whether the event was
fired and subsequently handled.

In the following section, we will be looking at all of the available events associated with the viewer and
their common use - if you would like to try out some of the events listed below, open the custom viewer
we were working with earlier in the chapter (WebForml . aspx from the project
web_viewer_properties) and add a label to your form (call it Event_Label) — we'll use this label to
notify the user when an event is fired. Clear its Text property. Now we are ready to begin.

Page Navigation Events

For page navigation, the NavigateEventArgs class provides the properties we need to work with the
Navigate event, including:

Property Description
CurrentPageNumber Returns the current page number
NewPageNumber Gets or sets the new page number

In the example below, the Navigate event would fire when a user changed the page within the viewer,
resulting in a label that would show the page they are coming from and the page they are navigating to.

Insert the following subroutine into your Web Form code:

Private Sub CrystalReportViewerl Navigate (ByVal source As Object, ByVal
MyEvent As CrystalDecisions.Web.NavigateEventArgs) Handles
CrystalReportViewerl .Navigate

If MyEvent.NewPageNumber <> 1 Then

Event_Label.Text = "Current page: " & MyEvent.CurrentPageNumber & _
" New Page: " & MyEvent.NewPageNumber
End If
End Sub

So, as the user navigates through the pages, this information is shown and can be used in your
application. Compile and run this code to see this happen.

146

Report Integration for Web-Based Applications

Refresh Events

The ReportRefresh event has no arguments other than the inherited Handled property. It can be
used to build metrics on how often a report is run or refreshed, and to pass information to users about
the report before they launch a refresh, as shown below:

Private Sub CrystalReportViewerl ReportRefresh (ByVal source As Object,
ByVal MyEvent As CrystalDecisions.Web.ViewerEventArgs) Handles
CrystalReportViewerl.ReportRefresh

Event_Label.Text = "Please be advised this report takes up to 2 minutes
to run."
End Sub

Insert this subroutine into your Web Form code, in the same way as we did above. Compile and run.
The message should now appear in the label when you hit Refresh.

Search Events

When a user searches for a report value, either through the standard icon on the toolbar or through
your own method call, the Search event is fired. The arguments for the Search event are:

Property Description

Direction Gets or sets the direction in which to search. This can be
either Backward or Forward.

PageNumberToBeginSearch Gets or sets the page number to start searching at.

TextToSearch Gets or sets the text to search for in the report.

So by using these event arguments, you could keep a record of what values users searched for or offer a
"Top Ten" search facility to let them search using the ten most requested search strings. An example of
getting the text that is being used in the search is included below - insert this subroutine into your code,
build and run it:

Private Sub CrystalReportViewerl_ Search (ByVal source As Object, ByVal
MyEvent As CrystalDecisions.Web.SearchEventArgs) Handles
CrystalReportViewerl.Search

Event_Label.Text = "You searched for " & MyEvent.TextToSearch

End Sub

Zoom Events

When the user changes the zoom factor for a particular report, the ViewZoom event fires, and has only
one argument, ZoomEventArgs. The NewZoomFactor property will get or set the magnification factor
for the viewer, as shown here:

Private Sub CrystalReportViewerl_ ViewZoom(ByVal source As Object, ByVal
MyEvent As CrystalDecisions.Web.ZoomEventArgs) Handles
CrystalReportViewerl .ViewZoom

147

Chapter 4

Select Case MyEvent.NewZoomFactor
Case "25"
Event_Label.Text = "You have selected 25%"
Case "50"
Event_Label.Text = "You have selected 50%"
Case "100"
Event_Label.Text = "You have selected full size"
End Select
End Sub

Note: For further customization of your report and control of your report's features
and functionality, you may want to turn to Chapter 8 to learn how to work with the
Crystal Reports Engine, which provides control over your report at run time.

Summary

By now you know how to integrate reporting into both your Windows and web applications, with this
chapter focusing on the latter. You should be able to pick the right object model for the functionality
you want to provide to your users, as well as work with all of the properties, methods, and events
contained within those models.

For our next trick, we are going to look at extending Crystal Reports through the use of XML Report
Web Services, which is the topic of Chapter 5.

148

Report Integration for Web-Based Applications

149

Chapter 4

150

